

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	skidl 0.0.7 documentation

Welcome to SKiDL’s documentation!

	skidl
	Features

	Caveats

	Installation

	Usage
	Scratching the Surface

	Going Deeper

	Converting Existing Designs to SKiDL

	API

	Credits
	Development Lead

	Contributors

	Acknowledgements

	History
	0.0.8 (2017-01-11)

	0.0.7 (2016-09-11)

	0.0.6 (2016-09-10)

	0.0.5 (2016-09-07)

	0.0.4 (2016-08-27)

	0.0.3 (2016-08-25)

	0.0.2 (2016-08-17)

	0.0.1 (2016-08-16)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	skidl 0.0.7 documentation

skidl

 [https://pypi.python.org/pypi/skidl]SKiDL is a module that allows you to compactly describe the interconnection of
electronic circuits and components using Python.
The resulting Python program performs electrical rules checking
for common mistakes and outputs a netlist that serves as input to
a PCB layout tool.

	Free software: MIT license

	Documentation: http://xesscorp.github.io/skidl

Features

	Has a powerful, flexible syntax (because it is Python).

	Permits compact descriptions of electronic circuits (think about not tracing
signals through a multi-page schematic).

	Allows textual descriptions of electronic circuits (think about using
diff and git [https://en.wikipedia.org/wiki/Git_(software)] for circuits).

	Performs electrical rules checking (ERC) for common mistakes (e.g., unconnected device I/O pins).

	Supports linear / hierarchical / mixed descriptions of electronic designs.

	Fosters design reuse (think about using PyPi [https://pypi.org/] and Github [https://github.com/]
to distribute electronic designs).

	Makes possible the creation of smart circuit modules whose behavior / structure are changed parametrically
(think about filters whose component values are automatically adjusted based on your
desired cutoff frequency).

	Can work with any ECAD tool (only two methods are needed: one for reading the part libraries and another
for outputing the correct netlist format).

	Takes advantage of all the benefits of the Python ecosystem (because it is Python).

As a very simple example, the SKiDL program below describes a circuit that
takes an input voltage, divides it by three, and outputs it:

from skidl import *

gnd = Net('GND') # Ground reference.
vin = Net('VI') # Input voltage to the divider.
vout = Net('VO') # Output voltage from the divider.
r1, r2 = 2 * Part('device', 'R', TEMPLATE) # Create two resistors.
r1.value, r1.footprint = '1K', 'Resistors_SMD:R_0805' # Set resistor values
r2.value, r2.footprint = '500', 'Resistors_SMD:R_0805' # and footprints.
r1[1] += vin # Connect the input to the first resistor.
r2[2] += gnd # Connect the second resistor to ground.
vout += r1[2], r2[1] # Output comes from the connection of the two resistors.

generate_netlist()

And this is the output that can be fed to a program like KiCad’s PCBNEW to
create the physical PCB:

(export (version D)
 (design
 (source "C:/Users/DEVB/PycharmProjects/test1\test.py")
 (date "08/12/2016 11:13 AM")
 (tool "SKiDL (0.0.1)"))
 (components
 (comp (ref R1)
 (value 1K)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R2)
 (value 500)
 (footprint Resistors_SMD:R_0805)))
 (nets
 (net (code 0) (name "VI")
 (node (ref R1) (pin 1)))
 (net (code 1) (name "GND")
 (node (ref R2) (pin 2)))
 (net (code 2) (name "VO")
 (node (ref R1) (pin 2))
 (node (ref R2) (pin 1))))
)

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	skidl 0.0.7 documentation

Caveats

Before working with SKiDL, please realize that it is still under development
and features are missing and/or likely to change.
The most notable missing feature is the lack of back annotation where
changes made to a circuit during PCB layout are reflected back into the
schematic (or, in our case, the SKiDL program).

Also, while SKiDL-generated netlists have been brought into KiCad’s PCBNEW
layout editor and manipulated, no physical PCBs have yet been fabricated.

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	skidl 0.0.7 documentation

Installation

SKiDL is pure Python so it’s easy to install:

$ pip install skidl

or:

$ easy_install skidl

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	skidl 0.0.7 documentation

Usage

Scratching the Surface

This is the minimum that you need to know to design electronic circuitry
using SKiDL:

	How to get access to SKiDL.

	How to find and instantiate a component (or part).

	How to connect pins of the parts to each other using nets.

	How to run an ERC on the circuit.

	How to generate a netlist for the circuit that serves as input to a PCB layout tool.

I’ll demonstrate these steps using SKiDL in an interactive Python session,
but normally the statements that are shown would be entered into a file and
executed as a Python script.

Accessing SKiDL

To use skidl in a project, just place the following at the top of your file:

import skidl

But for this tutorial, I’ll just import everything:

from skidl import *

Finding Parts

SKiDL provides a convenience function for searching for parts called
(naturally) search.
For example, if you needed an operational amplifier, then the following command would
pull up some likely candidates:

>>> search('opamp')
linear.lib: LT1492
linear.lib: MCP601R
linear.lib: LT1493
linear.lib: MCP603
linear.lib: LM4250
...
linear.lib: LM386
linear.lib: MCP603SN
linear.lib: INA128
linear.lib: LTC6082
linear.lib: MCP601SN

search accepts a regular expression and scans for it anywhere within the
name, description and keywords of all the parts in the library path.
So the following search pulls up several candidates:

>>> search('lm35')
dc-dc.lib: LM3578
linear.lib: LM358
regul.lib: LM350T
sensors.lib: LM35-NEB
sensors.lib: LM35-D
sensors.lib: LM35-LP

If you want to restrict the search to a specific part, then
use a regular expression like the following:

>>> search('^lm358$')
linear.lib: LM358

Once you have the part name and library, you can see the part’s pin numbers, names
and their functions using the show function:

>>> show('linear', 'LM358')
LM358:
 Pin 4/V-: POWER-IN
 Pin 8/V+: POWER-IN
 Pin 1/~: OUTPUT
 Pin 2/-: INPUT
 Pin 3/+: INPUT
 Pin 5/+: INPUT
 Pin 6/-: INPUT
 Pin 7/~: OUTPUT

show looks for exact matches of the part name in a library, so the following
command raises an error:

>>> show('linear', 'lm35')
ERROR: Unable to find part lm35 in library linear.

Instantiating Parts

The part library and name are used to instantiate a part as follows:

>>> resistor = Part('device','R')

You can customize the resistor by setting its attributes:

>>> resistor.value = '1K'
>>> resistor.value
'1K'

You can also combine the setting of attributes with the creation of the part:

>>> resistor = Part('device', 'R', value='1K')
>>> resistor.value
'1K'

You can use any valid Python name for a part attribute, but ref, value,
and footprint are necessary in order to generate the final netlist
for your circuit. And the attribute can hold any type of Python object,
but simple strings are probably the most useful.

The ref attribute holds the reference for the part. It’s set automatically
when you create the part:

>>> resistor.ref
'R1'

Since this was the first resistor we created, it has the honor of being named R1.
But you can easily change it:

>>> resistor.ref = 'R5'
>>> resistor.ref
'R5'

Now what happens if we create another resistor?:

>>> another_res = Part('device','R')
>>> another_res.ref
'R1'

Since the R1 reference was now available, the new resistor got it.
What if we tried renaming the first resistor back to R1:

>>> resistor.ref = 'R1'
>>> resistor.ref
'R1_1'

Since the R1 reference was already taken, SKiDL tried to give us
something close to what we wanted.
SKiDL won’t let different parts have the same reference because
that would confuse the hell out of everybody.

Connecting Pins

Parts are great and all, but not very useful if they aren’t connected to anything.
The connections between parts are called nets (think of them as wires)
and every net has one or more part pins on it.
SKiDL makes it easy to create nets and connect pins to them.
To demonstrate, let’s build the voltage divider circuit
shown in the introduction.

First, start by creating two resistors (note that I’ve also added the
footprint attribute that describes the physical package for the resistors):

>>> rup = Part('device', 'R', value='1K', footprint='Resistors_SMD:R_0805')
>>> rlow = Part('device', 'R', value='500', footprint='Resistors_SMD:R_0805')
>>> rup.ref, rlow.ref
('R1', 'R2')
>>> rup.value, rlow.value
('1K', '500')

To bring the voltage that will be divided into the circuit, let’s create a net:

>>> v_in = Net('VIN')
>>> v_in.name
'VIN'

Now attach the net to one of the pins of the rup resistor
(resistors are bidirectional which means it doesn’t matter which pin, so pick pin 1):

>>> rup[1] += v_in

You can verify that the net is attached to pin 1 of the resistor like this:

>>> rup[1].net
VIN: Pin 1/~: PASSIVE

Next, create a ground reference net and attach it to rlow:

>>> gnd = Net('GND')
>>> rlow[1] += gnd
>>> rlow[1].net
GND: Pin 1/~: PASSIVE

Finally, the divided voltage has to come out of the circuit on a net.
This can be done in several ways.
The first way is to define the output net and then attach the unconnected
pins of both resistors to it:

>>> v_out = Net('VO')
>>> v_out += rup[2], rlow[2]
>>> rup[2].net, rlow[2].net
(VO: Pin 2/~: PASSIVE, Pin 2/~: PASSIVE, VO: Pin 2/~: PASSIVE, Pin 2/~: PASSIVE)

An alternate method is to connect the resistors and then attach their
junction to the output net:

>>> rup[2] += rlow[2]
>>> v_out = Net('VO')
>>> v_out += rlow[2]
>>> rup[2].net, rlow[2].net
(VO: Pin 2/~: PASSIVE, Pin 2/~: PASSIVE, VO: Pin 2/~: PASSIVE, Pin 2/~: PASSIVE)

Either way works! Sometimes pin-to-pin connections are easier when you’re
just wiring two devices together, while the pin-to-net connection method
excels when three or more pins have a common connection.

Checking for Errors

Once the parts are wired together, you can do simple electrical rules checking
like this:

>>> ERC()

2 warnings found during ERC.
0 errors found during ERC.

Since this is an interactive session, the ERC warnings and errors are stored
in the file skidl.erc. (Normally, your SKiDL circuit description is stored
as a Python script such as my_circuit.py and the ERC() function will
dump its messages to my_circuit.erc.)
The ERC messages are:

WARNING: Only one pin (PASSIVE pin 1/~ of R/R1) attached to net VIN.
WARNING: Only one pin (PASSIVE pin 1/~ of R/R2) attached to net GND.

These messages are generated because the VIN and GND nets each have only
a single pin on them and this usually indicates a problem.
But it’s OK for this simple example, so the ERC can be turned off for
these two nets to prevent the spurious messages:

>>> v_in.do_erc = False
>>> gnd.do_erc = False
>>> ERC()

No ERC errors or warnings found.

Generating a Netlist

The end goal of using SKiDL is to generate a netlist that can be used
with a layout tool to generate a PCB. The netlist is output as follows:

>>> generate_netlist()

Like the ERC output, the netlist shown below is stored in the file skidl.net.
But if your SKiDL circuit description is in the my_circuit.py file,
then the netlist will be stored in my_circuit.net.

(export (version D)
 (design
 (source "C:\xesscorp\KiCad\tools\skidl\skidl\skidl.py")
 (date "08/12/2016 10:05 PM")
 (tool "SKiDL (0.0.1)"))
 (components
 (comp (ref R1)
 (value 1K)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R2)
 (value 500)
 (footprint Resistors_SMD:R_0805)))
 (nets
 (net (code 0) (name "VIN")
 (node (ref R1) (pin 1)))
 (net (code 1) (name "GND")
 (node (ref R2) (pin 1)))
 (net (code 2) (name "VO")
 (node (ref R1) (pin 2))
 (node (ref R2) (pin 2))))
)

You can also generate the netlist in XML format:

>>> generate_xml()

This is useful in a KiCad environment where the XML file is used as the
input to BOM-generation tools.

Going Deeper

The previous section showed the bare minimum you need to know to design
circuits with SKiDL, but doing a complicated circuit that way would suck donkeys.
This section will talk about some more advanced features.

Basic SKiDL Objects: Parts, Pins, Nets, and Buses

SKiDL uses four types of objects to represent a circuit: Part, Pin,
Net, and Bus.

The Part object represents an electronic component, which SKiDL thinks of as simple
bags of Pin objects with a few other attributes attached
(like the part number, name, reference, value, footprint, etc.).

The Pin object represents a terminal that brings an electronic signal into
and out of the part. Each Pin object has two important attributes:

	part which stores the reference to the Part object to which the pin belongs.

	net which stores the the reference to the Net object that the pin is
connected to, or None if the pin is unconnected.

A Net object is kind of like a Part: it’s a simple bag of pins.
The difference is, unlike a part, pins can be added to a net.
This happens when a pin on some part is connected to the net or when the
net is merged with another net.

Finally, a Bus is just a list of Net objects.
A bus of a certain width can be created from a number of existing nets,
newly-created nets, or both.

Creating SKiDL Objects

Here’s the most common way to create a part in your circuit:

my_part = Part('some_library', 'some_part_name')

When this is processed, the current directory will be checked for a file
called some_library.lib which will be opened and scanned for a part with the
name some_part_name. If the file is not found or it doesn’t contain
the requested part, then the process will be repeated using KiCad’s default
library directory.
(You can change SKiDL’s library search by changing the list of directories
stored in the skidl.lib_search_paths_kicad list.)

You’re not restricted to using only the current directory or the KiCad default
directory to search for parts. You can also search any file for a part by
using a full file name:

my_part = Part('C:/my_libs/my_great_parts.lib', 'my_super_regulator')

You’re also not restricted to getting an exact match on the part name: you can
use a regular expression instead. For example, this will find a part
with “358” anywhere in a part name or alias:

my_part = Part('some_library', '.*358.*')

If the regular expression matches more than one part, then you’ll only get the
first match and a warning that multiple parts were found.

Once you have a part, you can set its attributes like you could for any Python
object. As was shown previously, the ref attribute will already be set
but you can override it:

my_part.ref = 'U5'

The value and footprint attributes are also required for generating
a netlist. But you can also add any other attribute:

my_part.manf = 'Atmel'
my_part.setattr('manf#', 'ATTINY4-TSHR'

It’s also possible to set the attributes during the part creation:

my_part = Part('some_lib', 'some_part', ref='U5', footprint='SMD:SOT23_6', manf='Atmel')

Creating nets is also simple:

my_net = Net() # An unnamed net.
my_other_net = Net('Fred') # A named net.

As with parts, SKiDL will alter the name you assign to a net if it collides with another net
having the same name.

You can create a bus of a certain width like this:

my_bus = Bus('bus_name', 8) # Create a byte-wide bus.

(All buses must be named, but SKiDL will look for and correct colliding
bus names.)

You can also create a bus from existing nets, or buses, or the pins of parts:

my_part = Part('linear', 'LM358')
a_net = Net()
b_net = Net()
bus_nets = Bus('net_bus', a_net, b_net) # A 2-bit bus.
bus_pins = Bus('pin_bus', my_part[1], my_part[3]) # A 2-bit bus.
bus_buses = Bus('bus_bus', my_bus) # An 8-bit bus.

Finally, you can mix-and-match any combination of widths, nets, buses or part pins:

bus_mixed = Bus('mongrel', 8, a_net, my_bus, my_part[2]) # 8+1+8+1 = 18-bit bus.

The final object you can create is a Pin. You’ll probably never do this
(except in interactive sessions), and it’s probably a mistake if
you ever do do it, but here’s how to do it:

>>> p = Pin(num=1, name='my_pin', func=Pin.TRISTATE)
>>> p
Pin 1/my_pin: TRISTATE

Copying SKiDL Objects

Instead of creating a SKiDL object from scratch, sometimes it’s easier to just
copy an existing object. Here are some examples of creating a resistor and then making
some copies of it:

>>> r1 = Part('device', 'R', value=500)
>>> r2 = r1.copy() # Make a single copy of the resistor.
>>> r3 = r1.copy(value='1K') # Make a single copy, but give it a different value.
>>> r4 = r1(value='1K') # You can also call the object directly to make copies.
>>> r5, r6, r7 = r1(3) # Make 3 copies of the resistor.
>>> r8, r9, r10 = r1(value=[110,220,330]) # Make 3 copies, each with a different value.
>>> r11, r12 = 2 * r1 # Make copies using the '*' operator.

In some cases it’s clearer to create parts by copying a template part that
doesn’t actually get included in the netlist for the circuitry.
This is done like so:

>>> r_template = Part('device', 'R', dest=TEMPLATE) # Create a resistor just for copying.
>>> r1 = r_template(value='1K') # Make copy that becomes part of the actual circuitry.

Accessing Part Pins and Bus Lines

You can access the pins on a part or the individual nets of a bus
using numbers, slices, strings, and regular expressions, either singly or in any combination.

Suppose you have a PIC10 processor in a six-pin package:

>>> pic10 = Part('microchip_pic10mcu', 'pic10f220-i/ot')
>>> pic10
PIC10F220-I/OT:
 Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL
 Pin 2/VSS: POWER-IN
 Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL
 Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL
 Pin 5/VDD: POWER-IN
 Pin 6/Vpp/~MCLR~/GP3: INPUT

The most natural way to access one of its pins is to give the pin number
in brackets:

>>> pic10[3]
Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL

(If you have a part in a BGA package with pins numbers like C11, then
you’ll have to enter the pin number as a quoted string like 'C11'.)

You can also get several pins at once in a list:

>>> pic10[3,1,6]
[Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 6/Vpp/~MCLR~/GP3: INPUT]

You can even use Python slice notation:

>>> pic10[2:4] # Get pins 2 through 4.
[Pin 2/VSS: POWER-IN, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL]
>>> pic10[4:2] # Get pins 4 through 2.
[Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 2/VSS: POWER-IN]
>>> pic10[:] # Get all the pins.
[Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 2/VSS: POWER-IN, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL, Pin 5/VDD: POWER-IN, Pin 6/Vpp/~MCLR~/GP3: INPUT]

(It’s important to note that the slice notation used by SKiDL for parts is slightly
different than standard Python. In Python, a slice n:m would fetch indices
n, n+1, ..., m-1. With SKiDL, it actually fetches all the
way up to the last number: n, n+1, ..., m-1, m.
The reason for doing this is that most electronics designers are used to
the bounds on a slice including both endpoints. Perhaps it is a mistake to
do it this way. We’ll see...)

Instead of pin numbers, sometimes it makes the design intent more clear to
access pins by their names.
For example, it’s more obvious that a voltage supply net is being
attached to the power pin of the processor when it’s expressed like this:

pic10['VDD'] += supply_5V

You can use multiple names or regular expressions to get more than one pin:

>>> pic10['VDD','VSS']
[Pin 5/VDD: POWER-IN, Pin 2/VSS: POWER-IN]
>>> pic10['.*GP[1-3]']
[Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL, Pin 6/Vpp/~MCLR~/GP3: INPUT]

It can be tedious and error prone entering all the quote marks if you’re accessing
many pin names. SKiDL lets you enter a single, comma-delimited string of
pin names:

>>> pic10['.*GP0, .*GP1, .*GP2']
[Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL]

Part objects also provide the get_pins() function which can select pins in even more ways.
For example, this would get every bidirectional pin of the processor:

>>> pic10.get_pins(func=Pin.BIDIR)
[Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL]

However, slice notation doesn’t work with pin names. You’ll get an error if you try that.

Accessing the individual nets of a bus works similarly to accessing part pins:

>>> a = Net('NET_A') # Create a named net.
>>> b = Bus('BUS_B', 8, a) # Create a nine-bit bus.
>>> b
BUS_B:
 BUS_B0: # Note how the individual nets of the bus are named.
 BUS_B1:
 BUS_B2:
 BUS_B3:
 BUS_B4:
 BUS_B5:
 BUS_B6:
 BUS_B7:
 NET_A: # The last net retains its original name.
>>> b[0] # Get the first net of the bus.
BUS_B0:
>>> b[4,8] # Get the fifth and ninth bus lines.
[BUS_B4: , NET_A:]
>>> b[3:0] # Get the first four bus lines in reverse order.
[BUS_B3: , BUS_B2: , BUS_B1: , BUS_B0:]
>>> b['BUS_B.*'] # Get all the bus lines except the last one.
[BUS_B0: , BUS_B1: , BUS_B2: , BUS_B3: , BUS_B4: , BUS_B5: , BUS_B6: , BUS_B7:]
>>> b['NET_A'] # Get the last bus line.
NET_A:

Making Connections

Pins, nets, parts and buses can all be connected together in various ways, but
the primary rule of SKiDL connections is:

The ``+=`` operator is the only way to make connections!

At times you’ll mistakenly try to make connections using the
assignment operator (=). In many cases, SKiDL warns you if you do that,
but there are situations where it can’t (because
Python is a general-purpose programming language where
assignment is a necessary operation).
So remember the primary rule!

After the primary rule, the next thing to remember is that SKiDL’s main
purpose is creating netlists. To that end, it handles four basic, connection operations:

	Pin-to-Net:

	A pin is connected to a net, adding it to the list of pins
connected to that net. If the pin is already attached to other nets,
then those nets are connected to this net as well.

	Net-to-Pin:

	This is the same as doing a pin-to-net connection.

	Pin-to-Pin:

	A net is created and both pins are attached to it. If one or
both pins are already connected to other nets, then those nets are connected
to the newly-created net as well.

	Net-to-Net:

	Connecting one net to another merges the pins on both nets
onto a single, larger net.

There are three variants of each connection operation:

	One-to-One:

	This is the most frequent type of connection, for example, connecting one
pin to another or connecting a pin to a net.

	One-to-Many:

	This mainly occurs when multiple pins are connected to the same net, like
when multiple ground pins of a chip are connected to the circuit ground net.

	Many-to-Many:

	This usually involves bus connections to a part, such as connecting
a bus to the data or address pins of a processor. But there must be the
same number of things to connect in each set, e.g. you can’t connect
three pins to four nets.

As a first example, let’s connect a net to a pin on a part:

>>> pic10 = Part('microchip_pic10mcu','pic10f220-i/ot') # Get a part.
>>> io = Net('IO_NET') # Create a net.
>>> pic10['.*GP0'] += io # Connect the net to a part pin.
>>> io # Show the pins connected to the net.
IO_NET: Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL

You can do the same operation in reverse by connecting the part pin to the net
with the same result:

>>> pic10 = Part('microchip_pic10mcu','pic10f220-i/ot')
>>> io = Net('IO_NET')
>>> io += pic10['.*GP0'] # Connect a part pin to the net.
>>> io
IO_NET: Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL

You can also connect a pin directly to another pin.
In this case, an implicit net will be created between the pins that can be
accessed using the net attribute of either part pin:

>>> pic10['.*GP1'] += pic10['.*GP2'] # Connect two pins together.
>>> pic10['.*GP1'].net # Show the net connected to the pin.
N$1: Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL
>>> pic10['.*GP2'].net # Show the net connected to the other pin. Same thing!
N$1: Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL

You can connect multiple pins together, all at once:

>>> pic10[1] += pic10[2,3,6]
>>> pic10[1].net
N$1: Pin 6/Vpp/~MCLR~/GP3: INPUT, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL, Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 2/VSS: POWER-IN

Or you can do it incrementally:

>>> pic10[1] += pic10[2]
>>> pic10[1] += pic10[3]
>>> pic10[1] += pic10[6]
>>> pic10[1].net
N$1: Pin 2/VSS: POWER-IN, Pin 6/Vpp/~MCLR~/GP3: INPUT, Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL

If you connect pins on separate nets together, then all the pins are merged onto the same net:

>>> pic10[1] += pic10[2] # Put pins 1 & 2 on one net.
>>> pic10[1].net
N$1: Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 2/VSS: POWER-IN
>>> pic10[3] += pic10[4] # Put pins 3 & 4 on another net.
>>> pic10[3].net
N$2: Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL
>>> pic10[1] += pic10[4] # Connect two pins from different nets.
>>> pic10[3].net # Now all the pins are on the same net!
N$2: Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL, Pin 2/VSS: POWER-IN, Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL, Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL

Here’s an example of connecting a three-bit bus to three pins on a part:

>>> pic10 = Part('microchip_pic10mcu','pic10f220-i/ot')
>>> pic10
PIC10F220-I/OT:
 Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL
 Pin 2/VSS: POWER-IN
 Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL
 Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL
 Pin 5/VDD: POWER-IN
 Pin 6/Vpp/~MCLR~/GP3: INPUT
>>> b = Bus('GP', 3) # Create a 3-bit bus.
>>> pic10[4,3,1] += b[2:0] # Connect bus to part pins, one-to-one.
>>> b
GP:
 GP0: Pin 1/ICSPDAT/AN0/GP0: BIDIRECTIONAL
 GP1: Pin 3/ICSPCLK/AN1/GP1: BIDIRECTIONAL
 GP2: Pin 4/T0CKI/FOSC4/GP2: BIDIRECTIONAL

But SKiDL will warn you if there aren’t the same number of things to
connect on each side:

>>> pic10[4,3,1] += b[1:0] # Too few bus lines for the pins!
ERROR: Connection mismatch 3 != 2!
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "c:\xesscorp\kicad\tools\skidl\skidl\skidl.py", line 2630, in __iadd__
 raise Exception
Exception

Hierarchy

SKiDL supports the encapsulation of parts, nets and buses into modules
that can be replicated to reduce the design effort, and can be used in
other modules to create a functional hierarchy.
It does this using Python’s built-in machinery for defining and calling functions
so there’s almost nothing new to learn.

As an example, here’s the voltage divider as a module:

from skidl import *
import sys

Define the voltage divider module. The @SubCircuit decorator
handles some skidl housekeeping that needs to be done.
@SubCircuit
def vdiv(inp, outp):
 """Divide inp voltage by 3 and place it on outp net."""
 rup = Part('device', 'R', value='1K', footprint='Resistors_SMD:R_0805')
 rlo = Part('device','R', value='500', footprint='Resistors_SMD:R_0805')
 rup[1,2] += inp, outp
 rlo[1,2] += outp, gnd

gnd = Net('GND') # GLobal ground net.
input_net = Net('IN') # Net with the voltage to be divided.
output_net = Net('OUT') # Net with the divided voltage.

Instantiate the voltage divider and connect it to the input & output nets.
vdiv(input_net, output_net)

generate_netlist(sys.stdout)

For the most part, vdiv is just a standard Python function:
it accepts inputs, it performs operations on them, and it could return
outputs (but in this case, it doesn’t need to).
Other than the @SubCircuit decorator that appears before the function definition,
vdiv is just a Python function and it can do anything that a Python function can do.

Here’s the netlist that’s generated:

(export (version D)
 (design
 (source "C:/Users/DEVB/PycharmProjects/test1\test.py")
 (date "08/15/2016 03:35 PM")
 (tool "SKiDL (0.0.1)"))
 (components
 (comp (ref R1)
 (value 1K)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R2)
 (value 500)
 (footprint Resistors_SMD:R_0805)))
 (nets
 (net (code 0) (name "IN")
 (node (ref R1) (pin 1)))
 (net (code 1) (name "OUT")
 (node (ref R1) (pin 2))
 (node (ref R2) (pin 1)))
 (net (code 2) (name "GND")
 (node (ref R2) (pin 2))))
)

For an example of a multi-level hierarchy, the multi_vdiv module shown below
can use the vdiv module to divide a voltage multiple times:

from skidl import *
import sys

Define the voltage divider module.
@SubCircuit
def vdiv(inp, outp):
 """Divide inp voltage by 3 and place it on outp net."""
 rup = Part('device', 'R', value='1K', footprint='Resistors_SMD:R_0805')
 rlo = Part('device','R', value='500', footprint='Resistors_SMD:R_0805')
 rup[1,2] += inp, outp
 rlo[1,2] += outp, gnd

@SubCircuit
def multi_vdiv(repeat, inp, outp):
 """Divide inp voltage by 3 ** repeat and place it on outp net."""
 for _ in range(repeat):
 out_net = Net() # Create an output net for the current stage.
 vdiv(inp, out_net) # Instantiate a divider stage.
 inp = out_net # The output net becomes the input net for the next stage.
 outp += out_net # Connect the output from the last stage to the module output net.

gnd = Net('GND') # GLobal ground net.
input_net = Net('IN') # Net with the voltage to be divided.
output_net = Net('OUT') # Net with the divided voltage.
multi_vdiv(3, input_net, output_net) # Run the input through 3 voltage dividers.

generate_netlist(sys.stdout)

(For the EE’s out there: yes, I know cascading three simple voltage dividers
will not multiplicatively scale the input voltage because of the
input and output impedances of each stage!
It’s just the simplest example I could think of that shows the feature.)

And here’s the resulting netlist:

(export (version D)
 (design
 (source "C:/Users/DEVB/PycharmProjects/test1\test.py")
 (date "08/15/2016 05:52 PM")
 (tool "SKiDL (0.0.1)"))
 (components
 (comp (ref R1)
 (value 1K)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R2)
 (value 500)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R3)
 (value 1K)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R4)
 (value 500)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R5)
 (value 1K)
 (footprint Resistors_SMD:R_0805))
 (comp (ref R6)
 (value 500)
 (footprint Resistors_SMD:R_0805)))
 (nets
 (net (code 0) (name "IN")
 (node (ref R1) (pin 1)))
 (net (code 1) (name "N$1")
 (node (ref R2) (pin 1))
 (node (ref R1) (pin 2))
 (node (ref R3) (pin 1)))
 (net (code 2) (name "GND")
 (node (ref R4) (pin 2))
 (node (ref R6) (pin 2))
 (node (ref R2) (pin 2)))
 (net (code 3) (name "N$2")
 (node (ref R5) (pin 1))
 (node (ref R3) (pin 2))
 (node (ref R4) (pin 1)))
 (net (code 4) (name "OUT")
 (node (ref R5) (pin 2))
 (node (ref R6) (pin 1))))
)

Doodads

SKiDL has a few features that don’t fit into any other
category. Here they are.

No Connects

Sometimes you will use a part, but you won’t use every pin.
The ERC will complain about those unconnected pins:

>>> pic10 = Part('microchip_pic10mcu','pic10f220-i/ot')
>>> ERC()
ERC WARNING: Unconnected pin: BIDIRECTIONAL pin 1/ICSPDAT/AN0/GP0 of PIC10F220-I/OT/IC1.
ERC WARNING: Unconnected pin: POWER-IN pin 2/VSS of PIC10F220-I/OT/IC1.
ERC WARNING: Unconnected pin: BIDIRECTIONAL pin 3/ICSPCLK/AN1/GP1 of PIC10F220-I/OT/IC1.
ERC WARNING: Unconnected pin: BIDIRECTIONAL pin 4/T0CKI/FOSC4/GP2 of PIC10F220-I/OT/IC1.
ERC WARNING: Unconnected pin: POWER-IN pin 5/VDD of PIC10F220-I/OT/IC1.
ERC WARNING: Unconnected pin: INPUT pin 6/Vpp/~MCLR~/GP3 of PIC10F220-I/OT/IC1.

If you have pins that you intentionally want to leave unconnected, then
attach them to the special-purpose NC (no-connect) net and the warnings will
be supressed:

>>> pic10[1,3,4] += NC
>>> ERC()
ERC WARNING: Unconnected pin: POWER-IN pin 2/VSS of PIC10F220-I/OT/IC1.
ERC WARNING: Unconnected pin: POWER-IN pin 5/VDD of PIC10F220-I/OT/IC1.
ERC WARNING: Unconnected pin: INPUT pin 6/Vpp/~MCLR~/GP3 of PIC10F220-I/OT/IC1.

In fact, if you have a part with many pins that are not going to be used,
you can start off by attaching all the pins to the NC net.
After that, you can attach the pins you’re using to normal nets and they
will be removed from the NC net:

my_part[:] += NC # Connect every pin to NC net.
...
my_part[5] += Net() # Pin 5 is no longer unconnected.

The NC net is the only net for which this happens.
For all other nets, connecting two or more nets to the same pin
merges those nets and all the pins on them together.

Net Drive Level

Certain parts have power pins that are required to be driven by
a power supply net or else ERC warnings ensue.
This condition is usually satisfied if the power pins are driven by
the output of another part like a voltage regulator.
But if the regulator output passes through something like a
ferrite bead (to remove noise), then the filtered signal
is no longer a supply net and an ERC warning is issued.

In order to satisfy the ERC, the drive strength of a net can be set manually
using its drive attribute. As a simple example, consider connecting
a net to the power supply input of a processor and then running
the ERC:

>>> pic10 = Part('microchip_pic10mcu','pic10f220-i/ot')
>>> a = Net()
>>> pic10['VDD'] += a
>>> ERC()
...
ERC WARNING: Insufficient drive current on net N$1 for pin POWER-IN pin 5/VDD of PIC10F220-I/OT/IC1
...

This issue is fixed by changing the drive attribute of the net:

>>> pic10 = Part('microchip_pic10mcu','pic10f220-i/ot')
>>> a = Net()
>>> pic10['VDD'] += a
>>> a.drive = POWER
>>> ERC()
...
(Insufficient drive warning is no longer present.)
...

You can set the drive attribute at any time to any defined level, but POWER
is probably the only setting you’ll use.
Also, the drive attribute retains the highest of all the levels it has been set at,
so once it is set to the POWER level it is impossible to set it to a lower level.
(This is done during internal processing to keep a net at the highest drive
level of any of the pins that have been attached to it.)

In short, for any net you create that supplies power to devices in your circuit,
you should probably set its drive attribute to POWER.
This is equivalent to attaching power flags to nets in some ECAD packages like KiCad.

Selectively Supressing ERC Messages

Sometimes a portion of your circuit throws a lot of ERC warnings or errors
even though you know it’s correct.
SKiDL provides flags that allow you to turn off the ERC for selected nets, pins,
and parts like so:

my_net.do_erc = False # Turns of ERC for this particular net.
my_part[5].do_erc = False # Turns off ERC for this pin of this part.
my_part.do_erc = False # Turns off ERC for all the pins of this part.

Converting Existing Designs to SKiDL

If you have an existing schematic-based design, you can convert it to SKiDL as follows:

	Generate a netlist file for your design using whatever procedure your ECAD
system provides. For this discussion, call the netlist file my_design.net.

	Convert the netlist file into a SKiDL program using the following command:

netlist_to_skidl -i my_design.net -o my_design.py -w

That’s it! You can execute the my_design.py script and it will regenerate the
netlist. Or you can use the script as a subcircuit in a larger design.
Or do anything else that a SKiDL-based design supports.

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	skidl 0.0.7 documentation

API

SKiDL: A Python-Based Schematic Design Language

This module extends Python with the ability to design electronic
circuits. It provides classes for working with 1) electronic parts (Part),
2) collections of part terminals (Pin) connected via wires (Net), and
3) groups of related nets (Bus). Using these classes, you can
concisely describe the interconnection of components using a linear
and/or hierarchical structure. It also provides the capability to
check the resulting circuitry for the violation of electrical rules.
The output of a SKiDL-enabled Python script is a netlist that can be
imported into a PCB layout tool.

	
class skidl.skidl.Alias(name, id_tag=None)[source]

	An alias can be added to another object to give it another name.
Since an object might have several aliases, each alias can be tagged
with an identifier to discriminate between them.

	Parameters:	
	name – The alias name.

	id_tag – The identifier tag.

	
__eq__(search)[source]

	Return true if one alias is equal to another.

The aliases are equal if the following conditions are both true:

1. The ids must match or one or both ids must be something
 that evaluates to False (i.e., None, empty string or list, etc.).

2. The names must match based on using one name as a
 regular expression to compare to the other.

	Parameters:	search – The Alias object which self will be compared to.

	
class skidl.skidl.Bus(name, *args, **attribs)[source]

	This class collects one or more nets into a group that can be indexed.

	Parameters:	
	name – A string with the name of the bus.

	args – A list of ints, pins, nets, buses to attach to the net.

	Keyword Arguments:

		attribs –
A dictionary of attributes and values to attach to
the Net object.

Example

n = Net()
led1 = Part('device', 'LED')
b = Bus('B', 8, n, led1['K'])

	
__call__(num_copies=1, **attribs)

	Make zero or more copies of this bus.

	Parameters:	num_copies – Number of copies to make of this bus.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Bus copies or a Bus if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a bus can be copied just by calling it like so:

b = Bus('A', 8) # Create a bus.
b_copy = b(2) # Get two copies of the bus.

You can also use the multiplication operator to make copies:

b = 10 * Bus('A', 8) # Create an array of buses.

	
__getitem__(*ids)[source]

	Return a bus made up of the nets at the given indices.

	Parameters:	ids – A list of indices of bus lines. These can be individual
numbers, net names, nested lists, or slices.

	Returns:	A bus if the indices are valid, otherwise None.

	
__iadd__(*pins_nets_buses)

	Return the bus after connecting one or more nets, pins, or buses.

	Parameters:	pins_nets_buses – One or more Pin, Net or Bus objects or
lists/tuples of them.

	Returns:	The updated bus with the new connections.

Notes

You can connect nets or pins to a bus like so:

p = Pin() # Create a pin.
n = Net() # Create a net.
b = Bus('B', 2) # Create a two-wire bus.
b += p,n # Connect pin and net to B[0] and B[1].

	
__len__()[source]

	Return the number of nets in this bus.

	
__mul__(num_copies=1, **attribs)

	Make zero or more copies of this bus.

	Parameters:	num_copies – Number of copies to make of this bus.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Bus copies or a Bus if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a bus can be copied just by calling it like so:

b = Bus('A', 8) # Create a bus.
b_copy = b(2) # Get two copies of the bus.

You can also use the multiplication operator to make copies:

b = 10 * Bus('A', 8) # Create an array of buses.

	
__repr__()

	Return a list of the nets in this bus as a string.

	
__rmul__(num_copies=1, **attribs)

	Make zero or more copies of this bus.

	Parameters:	num_copies – Number of copies to make of this bus.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Bus copies or a Bus if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a bus can be copied just by calling it like so:

b = Bus('A', 8) # Create a bus.
b_copy = b(2) # Get two copies of the bus.

You can also use the multiplication operator to make copies:

b = 10 * Bus('A', 8) # Create an array of buses.

	
__setitem__(ids, *pins_nets_buses)[source]

	You can’t assign to bus lines. You must use the += operator.

This method is a work-around that allows the use of the += for making
connections to bus lines while prohibiting direct assignment. Python
processes something like my_bus[7:0] += 8 * Pin() as follows:

1. Part.__getitem__ is called with '7:0' as the index. This
 returns a NetPinList of eight nets from my_bus.
2. The NetPinList.__iadd__ method is passed the NetPinList and
 the thing to connect to the it (eight pins in this case). This
 method makes the actual connection to the part pin or pins. Then
 it creates an iadd_flag attribute in the object it returns.
3. Finally, Bus.__setitem__ is called. If the iadd_flag attribute
 is true in the passed argument, then __setitem__ was entered
 as part of processing the += operator. If there is no
 iadd_flag attribute, then __setitem__ was entered as a result
 of using a direct assignment, which is not allowed.

	
__str__()[source]

	Return a list of the nets in this bus as a string.

	
connect(*pins_nets_buses)[source]

	Return the bus after connecting one or more nets, pins, or buses.

	Parameters:	pins_nets_buses – One or more Pin, Net or Bus objects or
lists/tuples of them.

	Returns:	The updated bus with the new connections.

Notes

You can connect nets or pins to a bus like so:

p = Pin() # Create a pin.
n = Net() # Create a net.
b = Bus('B', 2) # Create a two-wire bus.
b += p,n # Connect pin and net to B[0] and B[1].

	
copy(num_copies=1, **attribs)[source]

	Make zero or more copies of this bus.

	Parameters:	num_copies – Number of copies to make of this bus.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Bus copies or a Bus if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a bus can be copied just by calling it like so:

b = Bus('A', 8) # Create a bus.
b_copy = b(2) # Get two copies of the bus.

You can also use the multiplication operator to make copies:

b = 10 * Bus('A', 8) # Create an array of buses.

	
name

	Get, set and delete the name of the bus.

When setting the bus name, if another bus with the same name
is found, the name for this bus is adjusted to make it unique.

	
skidl.skidl.Circuit

	alias of SubCircuit

	
class skidl.skidl.Net(name=None, *pins_nets_buses, **attribs)[source]

	Lists of connected pins are stored as nets using this class.

	Parameters:	
	name – A string with the name of the net. If None or ‘’, then
a unique net name will be assigned.

	*pins_nets_buses – One or more Pin, Net, or Bus objects or
lists/tuples of them to be connected to this net.

	Keyword Arguments:

		attribs –
A dictionary of attributes and values to attach to
the Net object.

	
__call__(num_copies=1, **attribs)

	Make zero or more copies of this net.

	Parameters:	num_copies – Number of copies to make of this net.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Net copies or a Net if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a net can be copied just by calling it like so:

n = Net('A') # Create a net.
n_copy = n() # Copy the net.

You can also use the multiplication operator to make copies:

n = 10 * Net('A') # Create an array of nets.

	
__iadd__(*pins_nets_buses)

	Return the net after connecting other pins, nets, and buses to it.

	Parameters:	*pins_nets_buses – One or more Pin, Net, or Bus objects or
lists/tuples of them to be connected to this net.

	Returns:	The updated net with the new connections.

Notes

Connections to nets can also be made using the += operator like so:

atmega = Part('atmel', 'ATMEGA16U2')
net = Net()
net += atmega[1] # Connects pin 1 of chip to the net.

	
__len__()[source]

	Return the number of pins attached to this net.

	
__mul__(num_copies=1, **attribs)

	Make zero or more copies of this net.

	Parameters:	num_copies – Number of copies to make of this net.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Net copies or a Net if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a net can be copied just by calling it like so:

n = Net('A') # Create a net.
n_copy = n() # Copy the net.

You can also use the multiplication operator to make copies:

n = 10 * Net('A') # Create an array of nets.

	
__repr__()

	Return a list of the pins on this net as a string.

	
__rmul__(num_copies=1, **attribs)

	Make zero or more copies of this net.

	Parameters:	num_copies – Number of copies to make of this net.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Net copies or a Net if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a net can be copied just by calling it like so:

n = Net('A') # Create a net.
n_copy = n() # Copy the net.

You can also use the multiplication operator to make copies:

n = 10 * Net('A') # Create an array of nets.

	
__str__()[source]

	Return a list of the pins on this net as a string.

	
connect(*pins_nets_buses)[source]

	Return the net after connecting other pins, nets, and buses to it.

	Parameters:	*pins_nets_buses – One or more Pin, Net, or Bus objects or
lists/tuples of them to be connected to this net.

	Returns:	The updated net with the new connections.

Notes

Connections to nets can also be made using the += operator like so:

atmega = Part('atmel', 'ATMEGA16U2')
net = Net()
net += atmega[1] # Connects pin 1 of chip to the net.

	
copy(num_copies=1, **attribs)[source]

	Make zero or more copies of this net.

	Parameters:	num_copies – Number of copies to make of this net.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Net copies or a Net if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a net can be copied just by calling it like so:

n = Net('A') # Create a net.
n_copy = n() # Copy the net.

You can also use the multiplication operator to make copies:

n = 10 * Net('A') # Create an array of nets.

	
drive

	Get, set and delete the drive strength of this net.

The drive strength cannot be set to a value less than its current
value. So as pins are added to a net, the drive strength reflects the
maximum drive value of the pins currently on the net.

	
name

	Get, set and delete the name of this net.

When setting the net name, if another net with the same name
is found, the name for this net is adjusted to make it unique.

	
class skidl.skidl.Part(lib=None, name=None, dest='NETLIST', tool='kicad', connections=None, part_defn=None, **attribs)[source]

	A class for storing a definition of a schematic part.

	
ref

	String storing the reference of a part within a schematic (e.g., ‘R5’).

	
value

	String storing the part value (e.g., ‘3K3’).

	
footprint

	String storing the PCB footprint associated with a part (e.g., SOIC-8).

	
pins

	List of Pin objects for this part.

	Parameters:	
	lib – Either a SchLib object or a schematic part library file name.

	name – A string with name of the part to find in the library, or to assign to
the part defined by the part definition.

	part_defn – A list of strings that define the part (usually read from a
schematic library file).

	tool – The format for the library file or part definition (e.g., KICAD).

	dest – String that indicates where the part is destined for (e.g., LIBRARY).

	connections – A dictionary with part pin names/numbers as keys and the
names of nets to which they will be connected as values. For example:
{ ‘IN-‘:’a_in’, ‘IN+’:’GND’, ‘1’:’AMPED_OUTPUT’, ‘14’:’VCC’, ‘7’:’GND’ }

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the part.
For example, manf_num=’LM4808MP-8’ would create an attribute
named ‘manf_num’ for the part and assign it the value ‘LM4808MP-8’.

	Raises:	
	* Exception if the part library and definition are both missing.

	* Exception if an unknown file format is requested.

	
__call__(num_copies=1, dest='NETLIST', **attribs)

	Make zero or more copies of this part while maintaining all pin/net
connections.

	Parameters:	
	num_copies – Number of copies to make of this part.

	dest – Indicates where the copy is destined for (e.g., NETLIST).

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Part copies or a single Part if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a part can be copied just by calling it like so:

res = Part('device','R') # Get a resistor.
res_copy = res(value='1K') # Copy the resistor and set resistance value.

You can also use the multiplication operator to make copies:

cap = Part('device', 'C') # Get a capacitor
caps = 10 * cap # Make an array with 10 copies of it.

	
__getitem__(*pin_ids, **criteria)

	Return list of part pins selected by pin numbers or names.

	Parameters:	pin_ids – A list of strings containing pin names, numbers,
regular expressions, slices, lists or tuples. If empty,
then it will select all pins.

	Keyword Arguments:

		criteria –
Key/value pairs that specify attribute values the
pins must have in order to be selected.

	Returns:	A list of pins matching the given IDs and satisfying all the criteria,
or just a single Pin object if only a single match was found.
Or None if no match was found.

Notes

Pins can be selected from a part by using brackets like so:

atmega = Part('atmel', 'ATMEGA16U2')
net = Net()
atmega[1] += net # Connects pin 1 of chip to the net.
net += atmega['.*RESET.*'] # Connects reset pin to the net.

	
__mul__(num_copies=1, dest='NETLIST', **attribs)

	Make zero or more copies of this part while maintaining all pin/net
connections.

	Parameters:	
	num_copies – Number of copies to make of this part.

	dest – Indicates where the copy is destined for (e.g., NETLIST).

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Part copies or a single Part if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a part can be copied just by calling it like so:

res = Part('device','R') # Get a resistor.
res_copy = res(value='1K') # Copy the resistor and set resistance value.

You can also use the multiplication operator to make copies:

cap = Part('device', 'C') # Get a capacitor
caps = 10 * cap # Make an array with 10 copies of it.

	
__repr__()

	Return a description of the pins on this part as a string.

	
__rmul__(num_copies=1, dest='NETLIST', **attribs)

	Make zero or more copies of this part while maintaining all pin/net
connections.

	Parameters:	
	num_copies – Number of copies to make of this part.

	dest – Indicates where the copy is destined for (e.g., NETLIST).

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Part copies or a single Part if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a part can be copied just by calling it like so:

res = Part('device','R') # Get a resistor.
res_copy = res(value='1K') # Copy the resistor and set resistance value.

You can also use the multiplication operator to make copies:

cap = Part('device', 'C') # Get a capacitor
caps = 10 * cap # Make an array with 10 copies of it.

	
__setitem__(ids, *pins_nets_buses)[source]

	You can’t assign to the pins of parts. You must use the += operator.

This method is a work-around that allows the use of the += for making
connections to pins while prohibiting direct assignment. Python
processes something like my_part[‘GND’] += gnd as follows:

1. Part.__getitem__ is called with 'GND' as the index. This
 returns a single Pin or a NetPinList.
2. The Pin.__iadd__ or NetPinList.__iadd__ method is passed
 the thing to connect to the pin (gnd in this case). This method
 makes the actual connection to the part pin or pins. Then it
 creates an iadd_flag attribute in the object it returns.
3. Finally, Part.__setitem__ is called. If the iadd_flag attribute
 is true in the passed argument, then __setitem__ was entered
 as part of processing the += operator. If there is no
 iadd_flag attribute, then __setitem__ was entered as a result
 of using a direct assignment, which is not allowed.

	
__str__()[source]

	Return a description of the pins on this part as a string.

	
copy(num_copies=1, dest='NETLIST', **attribs)[source]

	Make zero or more copies of this part while maintaining all pin/net
connections.

	Parameters:	
	num_copies – Number of copies to make of this part.

	dest – Indicates where the copy is destined for (e.g., NETLIST).

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the copy.

	Returns:	A list of Part copies or a single Part if num_copies==1.

	Raises:	Exception if the requested number of copies is a non-integer or negative.

Notes

An instance of a part can be copied just by calling it like so:

res = Part('device','R') # Get a resistor.
res_copy = res(value='1K') # Copy the resistor and set resistance value.

You can also use the multiplication operator to make copies:

cap = Part('device', 'C') # Get a capacitor
caps = 10 * cap # Make an array with 10 copies of it.

	
foot

	Get, set and delete the part footprint.

	
get_pins(*pin_ids, **criteria)[source]

	Return list of part pins selected by pin numbers or names.

	Parameters:	pin_ids – A list of strings containing pin names, numbers,
regular expressions, slices, lists or tuples. If empty,
then it will select all pins.

	Keyword Arguments:

		criteria –
Key/value pairs that specify attribute values the
pins must have in order to be selected.

	Returns:	A list of pins matching the given IDs and satisfying all the criteria,
or just a single Pin object if only a single match was found.
Or None if no match was found.

Notes

Pins can be selected from a part by using brackets like so:

atmega = Part('atmel', 'ATMEGA16U2')
net = Net()
atmega[1] += net # Connects pin 1 of chip to the net.
net += atmega['.*RESET.*'] # Connects reset pin to the net.

	
make_unit(label, *pin_ids, **criteria)[source]

	Create a PartUnit from a set of pins in a Part object.

Parts can be organized into smaller pieces called PartUnits. A PartUnit
acts like a Part but contains only a subset of the pins of the Part.

	Parameters:	
	label – The label used to identify the PartUnit.

	pin_ids – A list of strings containing pin names, numbers,
regular expressions, slices, lists or tuples.

	Keyword Arguments:

		criteria –
Key/value pairs that specify attribute values the
pin must have in order to be selected.

	Returns:	The PartUnit.

	
ref

	Get, set and delete the part reference.

When setting the part reference, if another part with the same
reference is found, the reference for this part is adjusted to make
it unique.

	
value

	Get, set and delete the part value.

	
class skidl.skidl.PartUnit(part, *pin_ids, **criteria)[source]

	Create a PartUnit from a set of pins in a Part object.

Parts can be organized into smaller pieces called PartUnits. A PartUnit
acts like a Part but contains only a subset of the pins of the Part.

	Parameters:	
	part – This is the parent Part whose pins the PartUnit is built from.

	pin_ids – A list of strings containing pin names, numbers,
regular expressions, slices, lists or tuples.

	Keyword Arguments:

		criteria –
Key/value pairs that specify attribute values the
pin must have in order to be selected.

Examples

This will return unit 1 from a part:

lm358 = Part('linear','lm358')
lm358a = PartUnit(lm358, unit=1)

Or you can specify the pins directly:

lm358a = PartUnit(lm358, 1, 2, 3)

	
class skidl.skidl.Pin(**attribs)[source]

	A class for storing data about pins for a part.

	Parameters:	attribs – Key/value pairs of attributes to add to the library.

	
nets

	The electrical nets this pin is connected to (can be >1).

	
part

	Link to the Part object this pin belongs to.

	
do_erc

	When false, the pin is not checked for ERC violations.

	
__call__(num_copies=1, **attribs)

	Return copy or list of copies of a pin including any net connection.

	Parameters:	num_copies – Number of copies to make of pin.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the pin.

Notes

An instance of a pin can be copied just by calling it like so:

p = Pin() # Create a pin.
p_copy = p() # This is a copy of the pin.

	
__iadd__(*pins_nets_buses)

	Return the pin after connecting it to one or more nets or pins.

	Parameters:	pins_nets_buses – One or more Pin, Net or Bus objects or
lists/tuples of them.

	Returns:	The updated pin with the new connections.

Notes

You can connect nets or pins to a pin like so:

p = Pin() # Create a pin.
n = Net() # Create a net.
p += net # Connect the net to the pin.

	
__mul__(num_copies=1, **attribs)

	Return copy or list of copies of a pin including any net connection.

	Parameters:	num_copies – Number of copies to make of pin.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the pin.

Notes

An instance of a pin can be copied just by calling it like so:

p = Pin() # Create a pin.
p_copy = p() # This is a copy of the pin.

	
__repr__()

	Return a description of this pin as a string.

	
__rmul__(num_copies=1, **attribs)

	Return copy or list of copies of a pin including any net connection.

	Parameters:	num_copies – Number of copies to make of pin.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the pin.

Notes

An instance of a pin can be copied just by calling it like so:

p = Pin() # Create a pin.
p_copy = p() # This is a copy of the pin.

	
__str__()[source]

	Return a description of this pin as a string.

	
connect(*pins_nets_buses)[source]

	Return the pin after connecting it to one or more nets or pins.

	Parameters:	pins_nets_buses – One or more Pin, Net or Bus objects or
lists/tuples of them.

	Returns:	The updated pin with the new connections.

Notes

You can connect nets or pins to a pin like so:

p = Pin() # Create a pin.
n = Net() # Create a net.
p += net # Connect the net to the pin.

	
copy(num_copies=1, **attribs)[source]

	Return copy or list of copies of a pin including any net connection.

	Parameters:	num_copies – Number of copies to make of pin.

	Keyword Arguments:

		attribs –
Name/value pairs for setting attributes for the pin.

Notes

An instance of a pin can be copied just by calling it like so:

p = Pin() # Create a pin.
p_copy = p() # This is a copy of the pin.

	
net

	Return one of the nets the pin is connected to.

	
class skidl.skidl.SubCircuit(circuit_func)[source]

	Class object that holds the entire netlist of parts and nets. This is
initialized once when the module is first imported and then all parts
and nets are added to its static members.

	
parts

	List of all the schematic parts as Part objects.

	
nets

	List of all the schematic nets as Net objects.

	
hierarchy

	A ‘.’-separated concatenation of the names of nested
SubCircuits at the current time it is read.

	
level

	The current level in the schematic hierarchy.

	
context

	Stack of contexts for each level in the hierarchy.

	
circuit_func

	The function that creates a given subcircuit.

	
__call__(*args, **kwargs)[source]

	This method is called when you invoke the SubCircuit object to create
some schematic circuitry.

	
classmethod set_pin_conflict_rule(pin1_func, pin2_func, conflict_level)[source]

	Set the level of conflict for two types of pins on the same net.

	Parameters:	
	pin1_func – The function of the first pin (e.g., Pin.OUTPUT).

	pin2_func – The function of the second pin (e.g., Pin.TRISTATE).

	conflict_level – Severity of conflict (e.g., cls.OK, cls.WARNING, cls.ERROR).

	
skidl.skidl.search(term)[source]

	Print a list of components with the regex term within their name, alias, description or keywords.

	
skidl.skidl.show(lib_name, part_name)[source]

	Print the I/O pins for a given part in a library.

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	skidl 0.0.7 documentation

Credits

Development Lead

	XESS Corp. <info@xess.com>

Contributors

None yet. Why not be the first?

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	skidl 0.0.7 documentation

Acknowledgements

SKiDL was inspired by two other projects:

	PHDL [https://sourceforge.net/p/phdl/wiki/Home/] is a schematic design
language that exemplifies the main features I wanted in SKiDL:
concise, text-based design entry with support for hierarchy.

	MyHDL [http://myhdl.org/] showed how to use the features of Python to support a particular
application (designing/simulating digital logic systems) while keeping access to a
rich software ecosystem.

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	skidl 0.0.7 documentation

History

0.0.8 (2017-01-11)

	skidl_to_netlist now uses templates.

	Default operation of search() is now less exacting.

	Traceback is now suppressed if show() is passed a part name not in a library.

0.0.7 (2016-09-11)

	Lack of KISYSMOD environment variable no longer causes an exception.

	requirements.txt file now references the requirements from setup.py.

	Changed setup so it generates a pckg_info file with version, author, email.

0.0.6 (2016-09-10)

	Fixed error caused when trying to find script name when SKiDL is run in interactive mode.

	Silenced errors/warnings when loading KiCad part description (.dcm) files.

0.0.5 (2016-09-07)

	SKiDL now searches for parts with a user-configurable list of library search paths.

	Part descriptions and keywords are now loaded from the .dcm file associated with a .lib file.

0.0.4 (2016-08-27)

	SKiDL scripts can now output netlists in XML format.

0.0.3 (2016-08-25)

	Added command-line utility to convert netlists into SKiDL programs.

0.0.2 (2016-08-17)

	Changed the link to the documentation.

0.0.1 (2016-08-16)

	First release on PyPI.

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	skidl 0.0.7 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 skidl	

 	
 	
 skidl.skidl	

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	skidl 0.0.7 documentation

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | L
 | M
 | N
 | P
 | R
 | S
 | V

_

 	

 	__call__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Part method)

 	(skidl.skidl.Pin method)

 	(skidl.skidl.SubCircuit method)

 	__eq__() (skidl.skidl.Alias method)

 	__getitem__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Part method)

 	__iadd__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Pin method)

 	__len__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	

 	__mul__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Part method)

 	(skidl.skidl.Pin method)

 	__repr__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Part method)

 	(skidl.skidl.Pin method)

 	__rmul__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Part method)

 	(skidl.skidl.Pin method)

 	__setitem__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Part method)

 	__str__() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Part method)

 	(skidl.skidl.Pin method)

A

 	

 	Alias (class in skidl.skidl)

B

 	

 	Bus (class in skidl.skidl)

C

 	

 	Circuit (in module skidl.skidl)

 	circuit_func (skidl.skidl.SubCircuit attribute)

 	connect() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Pin method)

 	

 	context (skidl.skidl.SubCircuit attribute)

 	copy() (skidl.skidl.Bus method)

 	

 	(skidl.skidl.Net method)

 	(skidl.skidl.Part method)

 	(skidl.skidl.Pin method)

D

 	

 	do_erc (skidl.skidl.Pin attribute)

 	

 	drive (skidl.skidl.Net attribute)

F

 	

 	foot (skidl.skidl.Part attribute)

 	

 	footprint (skidl.skidl.Part attribute)

G

 	

 	get_pins() (skidl.skidl.Part method)

H

 	

 	hierarchy (skidl.skidl.SubCircuit attribute)

L

 	

 	level (skidl.skidl.SubCircuit attribute)

M

 	

 	make_unit() (skidl.skidl.Part method)

N

 	

 	name (skidl.skidl.Bus attribute)

 	

 	(skidl.skidl.Net attribute)

 	Net (class in skidl.skidl)

 	

 	net (skidl.skidl.Pin attribute)

 	nets (skidl.skidl.Pin attribute)

 	

 	(skidl.skidl.SubCircuit attribute)

P

 	

 	Part (class in skidl.skidl)

 	part (skidl.skidl.Pin attribute)

 	parts (skidl.skidl.SubCircuit attribute)

 	

 	PartUnit (class in skidl.skidl)

 	Pin (class in skidl.skidl)

 	pins (skidl.skidl.Part attribute)

R

 	

 	ref (skidl.skidl.Part attribute), [1]

S

 	

 	search() (in module skidl.skidl)

 	set_pin_conflict_rule() (skidl.skidl.SubCircuit class method)

 	show() (in module skidl.skidl)

 	

 	skidl.skidl (module)

 	SubCircuit (class in skidl.skidl)

V

 	

 	value (skidl.skidl.Part attribute), [1]

 Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		skidl 0.0.7 documentation »

 All modules for which code is available

		skidl.skidl

 © Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment-bright.png

_modules/skidl/skidl.html

 Navigation

 		
 index

 		
 modules |

 		skidl 0.0.7 documentation »

 		Module code »

 Source code for skidl.skidl

-*- coding: utf-8 -*-

MIT license
#
Copyright (C) 2016 by XESS Corp.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

"""
SKiDL: A Python-Based Schematic Design Language

This module extends Python with the ability to design electronic
circuits. It provides classes for working with **1)** electronic parts (``Part``),
2) collections of part terminals (``Pin``) connected via wires (``Net``), and
3) groups of related nets (``Bus``). Using these classes, you can
concisely describe the interconnection of components using a linear
and/or hierarchical structure. It also provides the capability to
check the resulting circuitry for the violation of electrical rules.
The output of a SKiDL-enabled Python script is a netlist that can be
imported into a PCB layout tool.
"""

from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from builtins import super
from builtins import open
from builtins import int
from builtins import dict
from builtins import str
from builtins import zip
from builtins import range
from builtins import object
from future import standard_library
standard_library.install_aliases()

import sys
import os
import os.path
import re
import logging
import shlex
import inspect
from copy import deepcopy, copy
from pprint import pprint
import time
import pdb

from .pckg_info import __version__
from .py_2_3 import *

THIS_MODULE = locals()

Supported ECAD tools.
KICAD, EAGLE = ['kicad', 'eagle']
KICAD, = ['kicad',]

Places where parts can be stored.
NETLIST: The part will become part of a circuit netlist.
LIBRARY: The part will be placed in the part list for a library.
TEMPLATE: The part will be used as a template to be copied from.
NETLIST, LIBRARY, TEMPLATE = ['NETLIST', 'LIBRARY', 'TEMPLATE']

Prefixes for implicit nets and buses.
NET_PREFIX = 'N$'
BUS_PREFIX = 'B$'

Separator for strings containing multiple indices.
INDEX_SEPARATOR = ','

These are the paths to search for KiCad libraries.
try:
 _sch_lib_dir_kicad = os.path.join(os.environ['KISYSMOD'], '..', 'library')
except KeyError:
 logging.warning("KISYSMOD environment variable is missing, so default KiCad libraries won't be searched.")
 _sch_lib_dir_kicad = ''

lib_search_paths_kicad = ['.', _sch_lib_dir_kicad]

def _scriptinfo():
 """
 Returns a dictionary with information about the running top level Python
 script:

 dir: directory containing script or compiled executable
 name: name of script or executable
 source: name of source code file

 "name" and "source" are identical if and only if running interpreted code.
 When running code compiled by py2exe or cx_freeze, "source" contains
 the name of the originating Python script.
 If compiled by PyInstaller, "source" contains no meaningful information.

 Downloaded from:
 http://code.activestate.com/recipes/579018-python-determine-name-and-directory-of-the-top-lev/
 """

 #---
 # scan through call stack for caller information
 #---
 trc = 'skidl' # Make sure this gets set to something when in interactive mode.
 for teil in inspect.stack():
 # skip system calls
 if teil[1].startswith("<"):
 continue
 if teil[1].upper().startswith(sys.exec_prefix.upper()):
 continue
 trc = teil[1]

 # trc contains highest level calling script name
 # check if we have been compiled
 if getattr(sys, 'frozen', False):
 scriptdir, scriptname = os.path.split(sys.executable)
 return {"dir": scriptdir, "name": scriptname, "source": trc}

 # from here on, we are in the interpreted case
 scriptdir, trc = os.path.split(trc)
 # if trc did not contain directory information,
 # the current working directory is what we need
 if not scriptdir:
 scriptdir = os.getcwd()

 scr_dict = {"name": trc, "source": trc, "dir": scriptdir}
 return scr_dict

def _get_script_name():
 """Return the name of the top-level script."""
 return os.path.splitext(_scriptinfo()['name'])[0]

class _CountCalls(object):
 """
 Decorator for counting the number of times a function is called.

 This is used for counting errors and warnings passed to logging functions,
 making it easy to track if and how many errors/warnings were issued.
 """

 def __init__(self, func):
 self.func = func
 self.count = 0

 def __call__(self, *args, **kwargs):
 self.count += 1
 return self.func(*args, **kwargs)

Set up logging.
logger = logging.getLogger('skidl')

Errors always appear on the terminal.
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARNING)
handler.setFormatter(logging.Formatter('%(levelname)s: %(message)s'))
logger.addHandler(handler)

Errors and warnings are stored in a log file with the top-level script's name.
scr_name = _get_script_name()
handler = logging.StreamHandler(open(scr_name + '.log', 'w'))
handler.setLevel(logging.WARNING)
handler.setFormatter(logging.Formatter('%(levelname)s: %(message)s'))
logger.addHandler(handler)

logger.setLevel(logging.INFO)
logger.error = _CountCalls(logger.error)
logger.warning = _CountCalls(logger.warning)

def _find_and_open_file(filename, paths=None, ext=None, allow_failure=False):
 """Search for a file in list of paths, open it and return file pointer."""

 # If no paths are given, then just check the current directory.
 if not paths:
 paths = ['.']

 # If the filename has no extension, then give it one.
 if not os.path.splitext(filename)[1]:
 filename += ext

 # Search the paths for the file.
 for path in paths:
 abs_filename = os.path.join(path, filename)
 try:
 # The search stops once the file is successfully opened.
 return open(abs_filename)
 except (IOError, FileNotFoundError, TypeError):
 # Keep looking until all paths are checked.
 pass

 # Couldn't find the file.
 if allow_failure:
 return None
 else:
 logger.error("Can't open file: {}\n".format(filename))
 raise FileNotFoundError

def _add_quotes(s):
 """Return string with added quotes if it contains whitespace or parens."""
 if not isinstance(s, basestring):
 return s
 if re.search('[\s()]', s):
 return '"' + s + '"'
 return s

def _to_list(x):
 """
 Return x if it is already a list, or return a list if x is a scalar.
 """
 if isinstance(x, (list, tuple)):
 return x # Already a list, so just return it.
 return [x] # Wasn't a list, so make it into one.

def _list_or_scalar(lst):
 """
 Return a list if passed a multi-element list, otherwise return a single scalar.

 Args:
 lst: Either a list or a scalar.

 Returns:
 * A list if passed a multi-element list.
 * The list element if passed a single-element list.
 * None if passed an empty list.
 * A scalar if passed a scalar.
 """
 if isinstance(lst, (list, tuple)):
 if len(lst) > 1:
 return lst # Multi-element list, so return it unchanged.
 if len(lst) == 1:
 return lst[0] # Single-element list, so return the only element.
 return None # Empty list, so return None.
 return lst # Must have been a scalar, so return that.

def _flatten(nested_list):
 """
 Return a flattened list of items from a nested list.
 """
 lst = []
 for item in nested_list:
 if isinstance(item, (list, tuple)):
 lst.extend(_flatten(item))
 else:
 lst.append(item)
 return lst

def _expand_buses(pins_nets_buses):
 """
 Take list of pins, nets, and buses and return a list of only pins and nets.
 """
 pins_nets = []
 for pnb in pins_nets_buses:
 if isinstance(pnb, Bus):
 pins_nets.extend(pnb._get_nets())
 else:
 pins_nets.append(pnb)
 return pins_nets

def _get_unique_name(lst, attrib, prefix, initial=None):
 """
 Return a name that doesn't collide with another in a list.

 This subroutine is used to generate unique part references (e.g., "R12")
 or unique net names (e.g., "N$5").

 Args:
 lst: The list of objects containing names.
 attrib: The attribute in each object containing the name.
 prefix: The prefix attached to each name.
 initial: The initial setting of the name (can be None or empty string).

 Returns:
 A string containing the unique name.
 """

 # If the initial name is None, then create a name based on the prefix
 # and the smallest unused number that's available for that prefix.
 if not initial:

 # Get list entries with the prefix followed by a number, e.g.: C55
 filter_dict = {attrib: re.escape(prefix) + r'\d+'}
 sub_list = _filter(lst, **filter_dict)

 # If entries were found, then find the smallest available number.
 if sub_list:
 # Get the list of names.
 names = [getattr(item, attrib) for item in sub_list]
 # Remove the prefix from each name, leaving only the numbers.
 l = len(prefix)
 nums = set([int(n[l:]) for n in names])
 stop = max(nums) + 1
 # Generate a list of the unused numbers in the range [1,stop]
 # and select the minimum value.
 n = min(set(range(1, stop + 1)) - nums)

 # If no entries were found, start counting from 1.
 else:
 n = 1

 # The initial name is the prefix plus the number.
 initial = prefix + str(n)

 # If the initial name is just a number, then prepend the prefix to it.
 elif isinstance(initial, int):
 initial = prefix + str(initial)

 # Now determine if there are any items in the list with the same name.
 filter_dict = {attrib: re.escape(initial)}
 sub_list = _filter(lst, **filter_dict)

 # If the name is unique, then return it.
 if not sub_list:
 return initial

 # Otherwise, determine how many copies of the name are in the list and
 # append a number to make this name unique.
 filter_dict = {attrib: re.escape(initial) + r'_\d+'}
 n = len(_filter(lst, **filter_dict))
 initial = initial + '_' + str(n + 1)

 # Recursively call this routine using the newly-generated name to
 # make sure it's unique. Eventually, a unique name will be returned.
 return _get_unique_name(lst, attrib, prefix, initial)

def _fullmatch(regex, string, flags=0):
 """Emulate python-3.4 re.fullmatch()."""
 return re.match("(?:" + regex + r")\Z", string, flags=flags)

def _filter(lst, **criteria):
 """
 Return a list of objects whose attributes match a set of criteria.

 Return a list of objects extracted from a list whose attributes match a
 set of criteria. The match is done using regular expressions.
 Example: _filter(pins, name='io[0-9]+', direction='bidir') will
 return all the bidirectional pins of the component that have pin names
 starting with 'io' followed by a number (e.g., 'IO45').

 If an attribute of the lst object is a list or tuple, each entry in the
 list/tuple will be checked for a match. Only one entry needs to match to
 consider the entire attribute a match. This feature is useful when
 searching for objects that contain a list of aliases, such as Part objects.

 Args:
 lst: The list from which objects will be extracted.

 Keywords Args:
 criteria: Keyword-argument pairs. The keyword specifies the attribute
 name while the argument contains the desired value of the attribute.
 Regardless of what type the argument is, it is always compared as if
 it was a string. The argument can also be a regular expression that
 must match the entire string created from the attribute of the list
 object.

 Returns:
 A list of objects whose attributes match *all* the criteria.
 """

 # Place any matching objects from the list in here.
 extract = []

 for item in lst:
 # Compare an item's attributes to each of the criteria.
 # Break out of the criteria loop and don't add the item to the extract
 # list if *any* of the item's attributes *does not* match.
 for k, v in criteria.items():

 try:
 attr_val = getattr(item, k)
 except AttributeError:
 # If the attribute doesn't exist, then that's a non-match.
 break

 if isinstance(v, (int, basestring)):
 # Check integer or string attributes.

 if isinstance(attr_val, (list, tuple)):
 # If the attribute value from the item is a list or tuple,
 # loop through the list of attribute values. If at least one
 # value matches the current criterium, then break from the
 # criteria loop and extract this item.
 for val in attr_val:
 if _fullmatch(str(v), str(val), flags=re.IGNORECASE):
 # One of the list of values matched, so break from this
 # loop and do not execute the break in the
 # loop's else clause.
 break
 else:
 # If we got here, then none of the values in the attribute
 # list matched the current criterium. Therefore, break out
 # of the criteria loop and don't add this list item to
 # the extract list.
 break
 else:
 # If the attribute value from the item in the list is a scalar,
 # see if the value matches the current criterium. If it doesn't,
 # then break from the criteria loop and don't extract this item.
 if not _fullmatch(
 str(v), str(attr_val),
 flags=re.IGNORECASE):
 break

 else:
 # Check non-integer, non-string attributes.
 if isinstance(attr_val, (list, tuple)):
 if v not in attr_val:
 break
 elif v != attr_val:
 break

 else:
 # If we get here, then all the item attributes matched and the
 # for criteria loop didn't break, so add this item to the
 # extract list.
 extract.append(item)

 return extract

def _expand_indices(slice_min, slice_max, *indices):
 """
 Expand a list of indices into a list of integers and strings.

 This function takes the indices used to select pins of parts and
 lines of buses and returns a flat list of numbers and strings.
 String and integer indices are put in the list unchanged, but
 slices are expanded into a list of integers before entering the
 final list.

 Args:
 slice_min: The minimum possible index.
 slice_max: The maximum possible index (used for slice indices).
 indices: A list of indices made up of numbers, slices, text strings.
 The list can also be nested.

 Returns:
 A linear list of all the indices made up only of numbers and strings.
 """

 def expand_slice(slc):
 """Expand slice notation."""

 # Get bounds for slice.
 start, stop, step = slc.indices(slice_max)
 start = min(max(start, slice_min), slice_max)
 stop = min(max(stop, slice_min), slice_max)

 # Do this if it's a downward slice (e.g., [7:0]).
 if start > stop:
 if slc.start and slc.start > slice_max:
 logger.error('Index out of range ({} > {})!'.format(slc.start,
 slice_max))
 raise Exception
 # Count down from start to stop.
 stop = stop - step
 step = -step

 # Do this if it's a normal (i.e., upward) slice (e.g., [0:7]).
 else:
 if slc.stop and slc.stop > slice_max:
 logger.error('Index out of range ({} > {})!'.format(slc.stop,
 slice_max))
 raise Exception
 # Count up from start to stop
 stop += step

 # Create the sequence of indices.
 return range(start, stop, step)

 # Expand each index and add it to the list.
 ids = []
 for indx in _flatten(indices):
 if isinstance(indx, slice):
 ids.extend(expand_slice(indx))
 elif isinstance(indx, int):
 ids.append(indx)
 elif isinstance(indx, basestring):
 # String might contain multiple indices with a separator.
 for id in indx.split(INDEX_SEPARATOR):
 ids.append(id.strip())
 else:
 logger.error('Unknown type in index: {}'.format(type(indx)))
 raise Exception

 # Return the completely expanded list of indices.
 return ids

def _find_num_copies(**attribs):
 """
 Return the number of copies to make from the length of attribute values.

 Keyword Args:
 attribs: Dict of Keyword/Value pairs for setting object attributes.
 If the value is a scalar, then the number of copies is one.
 If the value is a list/tuple, the number of copies is the
 length of the list/tuple.

 Returns:
 The length of the longest value in the dict of attributes.

 Raises:
 Exception if there are two or more list/tuple values with different
 lengths that are greater than 1. (All attribute values must be scalars
 or lists/tuples of the same length.)
 """
 num_copies = set()
 for k, v in attribs.items():
 if isinstance(v, (list, tuple)):
 num_copies.add(len(v))
 else:
 num_copies.add(1)

 num_copies = list(num_copies)
 if len(num_copies) > 2:
 logger.error("Mismatched lengths of attributes: {}!".format(
 num_copies))
 raise Exception
 elif len(num_copies) > 1 and min(num_copies) > 1:
 logger.error("Mismatched lengths of attributes: {}!".format(
 num_copies))
 raise Exception

 try:
 return max(num_copies)
 except ValueError:
 return 0 # If the list if empty.

##

class _SchLib(object):
 """
 A class for storing parts from a schematic component library file.

 Attributes:
 filename: The name of the file from which the parts were read.
 parts: The list of parts (composed of Part objects).

 Args:
 filename: The name of the library file.
 tool: The format of the library file (e.g., KICAD).

 Keyword Args:
 attribs: Key/value pairs of attributes to add to the library.
 """

 # Keep a dict of filenames and their associated SchLib object
 # for fast loading of libraries.
 _cache = {}

 def __init__(self, filename=None, tool=KICAD, **attribs):
 """
 Load the parts from a library file.
 """

 self.filename = filename
 self.parts = []

 # Load this SchLib with an existing SchLib object if the file name
 # matches one in the cache.
 if filename in self._cache:
 self.__dict__.update(self._cache[filename].__dict__)

 # Otherwise, load from a schematic library file.
 else:
 try:
 # Use the tool name to find the function for loading the library.
 func_name = '_load_sch_lib_{}'.format(tool)
 load_func = self.__class__.__dict__[func_name]
 search_paths_name = 'lib_search_paths_{}'.format(tool)
 lib_search_paths = THIS_MODULE[search_paths_name]
 load_func(self, filename, lib_search_paths)
 # Cache a reference to the library.
 self._cache[filename] = self
 except KeyError:
 # OK, that didn't work so well...
 logger.error('Unsupported ECAD tool library: {}'.format(tool))
 raise Exception

 # Attach additional attributes to the library.
 for k, v in attribs.items():
 setattr(self, k, v)

 def _load_sch_lib_kicad(self, filename=None, lib_search_paths=None):
 """
 Load the parts from a KiCad schematic library file.

 Args:
 filename: The name of the KiCad schematic library file.
 """

 # Try to open the file. Add a .lib extension if needed. If the file
 # doesn't open, then try looking in the KiCad library directory.
 f = _find_and_open_file(filename, lib_search_paths, '.lib')

 # Check the file header to make sure it's a KiCad library.
 header = []
 header = [f.readline()]
 if header and 'EESchema-LIBRARY' not in header[0]:
 logger.error(
 'The file {} is not a KiCad Schematic Library File\n'.format(
 filename))
 return

 # Read the definition of each part line-by-line and then create
 # a Part object that gets stored in the part list.
 part_defn = []
 for line in f.readlines():

 # Skip over comments.
 if line.startswith('#'):
 pass

 # Look for the start of a part definition.
 elif line.startswith('DEF'):
 # Initialize the part definition with the first line.
 # This will also signal that succeeding lines should be added.
 part_defn = [line]

 # If gathering the part definition has begun, then continue adding lines.
 elif part_defn:
 part_defn.append(line)

 # If the current line ends this part definition, then create
 # the Part object and add it to the part list. Be sure to
 # indicate that the Part object is being added to a library
 # and not to a schematic netlist.
 if line.startswith('ENDDEF'):
 self.parts.append(Part(part_defn=part_defn,
 tool=KICAD,
 dest=LIBRARY))

 # Clear the part definition in preparation for the next one.
 part_defn = []

 # Now add information from any associated DCM file.
 filename = os.path.splitext(filename)[0] # Strip any extension.
 f = _find_and_open_file(filename, lib_search_paths, '.dcm', allow_failure=True)
 if not f:
 return

 part_desc = {}
 for line in f.readlines():

 # Skip over comments.
 if line.startswith('#'):
 pass

 # Look for the start of a part description.
 elif line.startswith('$CMP'):
 part_desc['name'] = line.split()[-1]

 # If gathering the part definition has begun, then continue adding lines.
 elif part_desc:
 if line.startswith('D'):
 part_desc['description'] = ' '.join(line.split()[1:])
 elif line.startswith('K'):
 part_desc['keywords'] = ' '.join(line.split()[1:])
 elif line.startswith('$ENDCMP'):
 try:
 part = self.get_part_by_name(part_desc['name'], silent=True)
 except Exception:
 pass
 else:
 part.description = part_desc.get('description', '')
 part.keywords = part_desc.get('keywords', '')
 part_desc = {}
 else:
 pass

 def get_parts(self, **criteria):
 """
 Return parts from a library that match *all* the given criteria.

 Keyword Args:
 criteria: One or more keyword-argument pairs. The keyword specifies
 the attribute name while the argument contains the desired value
 of the attribute.

 Returns:
 A single Part or a list of Parts that match all the criteria. """
 return _list_or_scalar(_filter(self.parts, **criteria))

 def get_part_by_name(self, name, allow_multiples=False, silent=False):
 """
 Return a Part with the given name or alias from the part list.

 Args:
 name: The part name or alias to search for in the library.
 allow_multiples: If true, return a list of parts matching the name.
 If false, return only the first matching part and issue
 a warning if there were more than one.
 silent: If true, don't issue errors or warnings.

 Returns:
 A single Part or a list of Parts that match all the criteria.
 """

 # First check to see if there is a part or parts with a matching name.
 parts = self.get_parts(name=name)

 # No part with that name, so check for an alias that matches.
 if not parts:
 parts = self.get_parts(aliases=name)

 # No part with that alias either, so signal an error.
 if not parts:
 if not silent:
 logger.error('Unable to find part {} in library {}.'.format(
 name, self.filename))
 raise Exception

 # Multiple parts with that name or alias exists, so return the list
 # of parts or just the first part on the list.
 if isinstance(parts, (list, tuple)):

 # Return the entire list if multiples are allowed.
 if allow_multiples:
 parts = [p.parse() for p in parts]

 # Just return the first part from the list if multiples are not
 # allowed and issue a warning.
 else:
 if not silent:
 logger.warning(
 'Found multiple parts matching {}. Selecting {}.'.format(
 name, parts[0].name))
 parts = parts[0]
 parts._parse()

 # Only a single matching part was found, so return that.
 else:
 parts._parse()

 # Return the library part or parts that were found.
 return parts

 """Get part by name or alias using []'s."""
 __getitem__ = get_part_by_name

 def __str__(self):
 """Return a list of the part names in this library as a string."""
 return '\n'.join([p.name for p in self.parts])

 __repr__ = __str__

 def __len__(self):
 """
 Return number of parts in library.
 """
 return len(self.parts)

##

[docs]class Pin(object):
 """
 A class for storing data about pins for a part.

 Args:
 attribs: Key/value pairs of attributes to add to the library.

 Attributes:
 nets: The electrical nets this pin is connected to (can be >1).
 part: Link to the Part object this pin belongs to.
 do_erc: When false, the pin is not checked for ERC violations.
 """

 # Various types of pins.
 INPUT, OUTPUT, BIDIR, TRISTATE, PASSIVE, UNSPEC, PWRIN,\
 PWROUT, OPENCOLL, OPENEMIT, NOCONNECT = range(11)

 # Various drive levels a pin can output:
 # NOCONNECT_DRIVE: NC pin drive.
 # NO_DRIVE: No drive capability (like an input pin).
 # PASSIVE_DRIVE: Small drive capability, such as a pullup.
 # ONESIDE_DRIVE: Can pull high (open-emitter) or low (open-collector).
 # TRISTATE_DRIVE: Can pull high/low and be in high-impedance state.
 # PUSHPULL_DRIVE: Can actively drive high or low.
 # POWER_DRIVE: A power supply or ground line.
 NOCONNECT_DRIVE, NO_DRIVE, PASSIVE_DRIVE, ONESIDE_DRIVE,\
 TRISTATE_DRIVE, PUSHPULL_DRIVE, POWER_DRIVE = range(7)

 # Information about the various types of pins:
 # function: A string describing the pin's function.
 # drive: The drive capability of the pin.
 # rcv_min: The minimum amount of drive the pin must receive to function.
 # rcv_max: The maximum amount of drive the pin can receive and still function.
 pin_info = {
 INPUT: {'function': 'INPUT',
 'drive': NO_DRIVE,
 'max_rcv': POWER_DRIVE,
 'min_rcv': PASSIVE_DRIVE, },
 OUTPUT: {'function': 'OUTPUT',
 'drive': PUSHPULL_DRIVE,
 'max_rcv': PASSIVE_DRIVE,
 'min_rcv': NO_DRIVE, },
 BIDIR: {'function': 'BIDIRECTIONAL',
 'drive': TRISTATE_DRIVE,
 'max_rcv': POWER_DRIVE,
 'min_rcv': NO_DRIVE, },
 TRISTATE: {'function': 'TRISTATE',
 'drive': TRISTATE_DRIVE,
 'max_rcv': TRISTATE_DRIVE,
 'min_rcv': NO_DRIVE, },
 PASSIVE: {'function': 'PASSIVE',
 'drive': PASSIVE_DRIVE,
 'max_rcv': POWER_DRIVE,
 'min_rcv': NO_DRIVE, },
 UNSPEC: {'function': 'UNSPECIFIED',
 'drive': NO_DRIVE,
 'max_rcv': POWER_DRIVE,
 'min_rcv': NO_DRIVE, },
 PWRIN: {'function': 'POWER-IN',
 'drive': NO_DRIVE,
 'max_rcv': POWER_DRIVE,
 'min_rcv': POWER_DRIVE, },
 PWROUT: {'function': 'POWER-OUT',
 'drive': POWER_DRIVE,
 'max_rcv': PASSIVE_DRIVE,
 'min_rcv': NO_DRIVE, },
 OPENCOLL: {'function': 'OPEN-COLLECTOR',
 'drive': ONESIDE_DRIVE,
 'max_rcv': TRISTATE_DRIVE,
 'min_rcv': NO_DRIVE, },
 OPENEMIT: {'function': 'OPEN-EMITTER',
 'drive': ONESIDE_DRIVE,
 'max_rcv': TRISTATE_DRIVE,
 'min_rcv': NO_DRIVE, },
 NOCONNECT: {'function': 'NO-CONNECT',
 'drive': NOCONNECT_DRIVE,
 'max_rcv': NOCONNECT_DRIVE,
 'min_rcv': NOCONNECT_DRIVE, },
 }

 def __init__(self, **attribs):
 self.nets = []
 self.part = None
 self.do_erc = True

 # Attach additional attributes to the pin.
 for k, v in attribs.items():
 setattr(self, k, v)

[docs] def copy(self, num_copies=1, **attribs):
 """
 Return copy or list of copies of a pin including any net connection.

 Args:
 num_copies: Number of copies to make of pin.

 Keyword Args:
 attribs: Name/value pairs for setting attributes for the pin.

 Notes:
 An instance of a pin can be copied just by calling it like so::

 p = Pin() # Create a pin.
 p_copy = p() # This is a copy of the pin.
 """

 # Check that a valid number of copies is requested.
 if not isinstance(num_copies, int):
 logger.error(
 "Can't make a non-integer number ({}) of copies of a pin!".format(
 num_copies))
 raise Exception
 if num_copies < 0:
 logger.error(
 "Can't make a negative number ({}) of copies of a pin!".format(
 num_copies))
 raise Exception

 copies = []
 for _ in range(num_copies):

 # Make a shallow copy of the pin.
 cpy = copy(self)

 # The copy is not on a net, yet.
 cpy.nets = []

 # Connect the new pin to the same net as the original.
 if self.nets:
 self.nets[0] += cpy

 # Attach additional attributes to the pin.
 for k, v in attribs.items():
 setattr(cpy, k, v)

 copies.append(cpy)

 return _list_or_scalar(copies)

 """Make copies with the multiplication operator or by calling the object."""
 __mul__ = copy
 __rmul__ = copy
 __call__ = copy

 def _is_connected(self):
 """
 Return true if a pin is connected to a net (but not a no-connect net).
 """
 if not self.nets:
 # This pin is not connected to any nets.
 return False

 # Get the types of things this pin is connected to.
 net_types = set([type(n) for n in self.nets])

 if set([_NCNet]) == net_types:
 # This pin is only connected to no-connect nets.
 return False
 if set([Net]) == net_types:
 # This pin is only connected to normal nets.
 return True
 if set([Net,_NCNet]) == net_types:
 # Can't be connected to both normal and no-connect nets!
 logger.error('{} is connected to both normal and no-connect nets!'.format(self._erc_desc()))
 raise Exception
 # This is just strange...
 logger.error("{} is connected to something strange: {}".format(
 self._erc_desc(), nets))
 raise Exception

 def _is_attached(pin_net_bus):
 """Return true if this pin is attached to the given pin, net or bus."""
 if not self._is_connected():
 return False
 if isinstance(pin_net_bus, Pin):
 if pin_net_bus._is_connected():
 return pin_net_bus.net._is_attached(self.net)
 else:
 return False
 if isinstance(pin_net_bus, Net):
 return pin_net_bus._is_attached(self.net)
 if isinstance(pin_net_bus, Bus):
 for net in pin_net_bus[:]:
 if self.net._is_attached(net):
 return True
 return False
 logger.error("Pins can't be attached to {}!".format(type(pin_net_bus)))
 raise Exception

[docs] def connect(self, *pins_nets_buses):
 """
 Return the pin after connecting it to one or more nets or pins.

 Args:
 pins_nets_buses: One or more Pin, Net or Bus objects or
 lists/tuples of them.

 Returns:
 The updated pin with the new connections.

 Notes:
 You can connect nets or pins to a pin like so::

 p = Pin() # Create a pin.
 n = Net() # Create a net.
 p += net # Connect the net to the pin.
 """

 # Go through all the pins and/or nets and connect them to this pin.
 for pn in _expand_buses(_flatten(pins_nets_buses)):
 if isinstance(pn, Pin):
 # Connecting pin-to-pin.
 if self._is_connected():
 # If self is already connected to a net, then add the
 # other pin to the same net.
 self.nets[0] += pn
 elif pn._is_connected():
 # If self is unconnected but the other pin is, then
 # connect self to the other pin's net.
 pn.nets[0] += self
 else:
 # Neither pin is connected to a net, so create a net
 # and attach both to it.
 Net().connect(self, pn)
 elif isinstance(pn, Net):
 # Connecting pin-to-net, so just connect the pin to the net.
 pn += self
 else:
 logger.error('Cannot attach non-Pin/non-Net {} to {}.'.format(
 type(pn), self._erc_desc()))
 raise Exception

 # Set the flag to indicate this result came from the += operator.
 self.iadd_flag = True

 return self

 """Connect a net to a pin using the += operator."""
 __iadd__ = connect

 def _disconnect(self):
 """Disconnect this pin from all nets."""
 if not self.net:
 return
 for n in self.nets:
 n._disconnect(self)
 self.nets = []

 def _get_nets(self):
 """Return a list containing the Net objects connected to this pin."""
 return self.nets

 def _get_pins(self):
 """Return a list containing this pin."""
 return _to_list(self)

 def _erc_desc(self):
 """Return a string describing this pin for ERC."""
 desc = "{func} pin {num}/{name} of {part}".format(
 part=self.part._erc_desc(),
 num=self.num,
 name=self.name,
 func=Pin.pin_info[self.func]['function'])
 return desc

[docs] def __str__(self):
 """Return a description of this pin as a string."""
 part_ref = getattr(self.part, 'ref', '???')
 pin_num = getattr(self, 'num', '???')
 pin_name = getattr(self, 'name', '???')
 pin_func = getattr(self, 'func', Pin.UNSPEC)
 pin_func_str = Pin.pin_info[pin_func]['function']
 return 'Pin {ref}/{num}/{name}/{func}'.format(
 ref = part_ref,
 num=pin_num,
 name=pin_name,
 func=pin_func_str)

 @property
 def net(self):
 """Return one of the nets the pin is connected to."""
 if self.nets:
 return self.nets[0]
 return None

 __repr__ = __str__

##

[docs]class Alias(object):
 """
 An alias can be added to another object to give it another name.
 Since an object might have several aliases, each alias can be tagged
 with an identifier to discriminate between them.

 Args:
 name: The alias name.
 id_tag: The identifier tag.
 """

 def __init__(self, name, id_tag=None):
 self.name = name
 self.id = id_tag

[docs] def __eq__(self, search):
 """
 Return true if one alias is equal to another.

 The aliases are equal if the following conditions are both true::

 1. The ids must match or one or both ids must be something
 that evaluates to False (i.e., None, empty string or list, etc.).

 2. The names must match based on using one name as a
 regular expression to compare to the other.

 Args:
 search: The Alias object which self will be compared to.
 """
 return (not self.id or not search.id or search.id == self.id) and \
 (_fullmatch(str(search.name), str(self.name), flags=re.IGNORECASE) or
 _fullmatch(str(self.name), str(search.name), flags=re.IGNORECASE))

##

[docs]class Part(object):
 """
 A class for storing a definition of a schematic part.

 Attributes:
 ref: String storing the reference of a part within a schematic (e.g., 'R5').
 value: String storing the part value (e.g., '3K3').
 footprint: String storing the PCB footprint associated with a part (e.g., SOIC-8).
 pins: List of Pin objects for this part.

 Args:
 lib: Either a SchLib object or a schematic part library file name.
 name: A string with name of the part to find in the library, or to assign to
 the part defined by the part definition.
 part_defn: A list of strings that define the part (usually read from a
 schematic library file).
 tool: The format for the library file or part definition (e.g., KICAD).
 dest: String that indicates where the part is destined for (e.g., LIBRARY).
 connections: A dictionary with part pin names/numbers as keys and the
 names of nets to which they will be connected as values. For example:
 { 'IN-':'a_in', 'IN+':'GND', '1':'AMPED_OUTPUT', '14':'VCC', '7':'GND' }

 Keyword Args:
 attribs: Name/value pairs for setting attributes for the part.
 For example, manf_num='LM4808MP-8' would create an attribute
 named 'manf_num' for the part and assign it the value 'LM4808MP-8'.

 Raises:
 * Exception if the part library and definition are both missing.
 * Exception if an unknown file format is requested.
 """

 def __init__(self,
 lib=None,
 name=None,
 dest=NETLIST,
 tool=KICAD,
 connections=None,
 part_defn=None,
 **attribs):

 # Create a Part from a library entry.
 if lib:
 # If the lib argument is a string, then create a library using the
 # string as the library file name.
 if isinstance(lib, basestring):
 lib = _SchLib(filename=lib, tool=tool)

 # Make a copy of the part from the library but don't add it to the netlist.
 part = lib[name].copy(1, TEMPLATE)

 # Overwrite self with the new part.
 self.__dict__.update(part.__dict__)

 # Make sure all the pins have a valid reference to this part.
 self._associate_pins()

 # Store the library name of this part.
 self.lib = lib.filename

 # Otherwise, create a Part from a part definition. If the part is
 # destined for a library, then just get its name. If it's going into
 # a netlist, then parse the entire part definition.
 elif part_defn:
 self.tool = tool
 self.part_defn = part_defn
 self._parse(just_get_name=(dest != NETLIST))

 else:
 logger.error(
 "Can't make a part without a library & part name or a part definition.")
 raise Exception

 # Add additional attributes to the part.
 for k, v in attribs.items():
 setattr(self, k, v)

 # Allow part to be included in ERC.
 self.do_erc = True

 # Dictionary for storing subunits of the part, if desired.
 self.unit = {}

 # If the part is going to be an element in a circuit, then add it to the
 # the circuit and make any indicated pin/net connections.
 if dest != LIBRARY:
 if dest == NETLIST:
 SubCircuit._add_part(self)
 if isinstance(connections, dict):
 for pin, net in connections.items():
 net += self[pin]

 def _find_min_max_pins(self):
 """ Return the minimum and maximum pin numbers for the part. """
 pin_nums = []
 try:
 for p in self.pins:
 try:
 pin_nums.append(int(p.num))
 except ValueError:
 pass
 except AttributeError:
 # This happens if the part has no pins.
 pass
 try:
 return min(pin_nums), max(pin_nums)
 except ValueError:
 # This happens if the part has no integer-labeled pins.
 return 0, 0

 def _parse(self, just_get_name=False):
 """
 Create a part from its stored part definition.

 Args:
 just_get_name: When true, just get the name and aliases for the
 part. Leave the rest unparsed.
 """

 try:
 parse_func = self.__class__.__dict__['_parse_{}'.format(self.tool)]
 parse_func(self, just_get_name)
 except KeyError:
 logger.error(
 "Can't create a part with an unknown ECAD tool file format: {}.".format(
 self.tool))
 raise Exception

 # Find the minimum and maximum pin numbers for the part after parsing.
 self.min_pin, self.max_pin = self._find_min_max_pins()

 def _parse_kicad(self, just_get_name=False):
 """
 Create a Part using a part definition from a KiCad schematic library.

 This method was written based on the code from
 https://github.com/KiCad/kicad-library-utils/tree/master/schlib.
 It's covered by GPL3.

 Args:
 part_defn: A list of strings that define the part (usually read from a
 schematic library file). Can also be None.
 just_get_name: If true, scan the part definition until the
 name and aliases are found. The rest of the definition
 will be parsed if the part is actually used.
 """

 _DEF_KEYS = ['name', 'reference', 'unused', 'text_offset',
 'draw_pinnumber', 'draw_pinname', 'unit_count',
 'units_locked', 'option_flag']
 _F0_KEYS = ['reference', 'posx', 'posy', 'text_size', 'text_orient',
 'visibility', 'htext_justify', 'vtext_justify']
 _FN_KEYS = ['name', 'posx', 'posy', 'text_size', 'text_orient',
 'visibility', 'htext_justify', 'vtext_justify',
 'fieldname']
 _ARC_KEYS = ['posx', 'posy', 'radius', 'start_angle', 'end_angle',
 'unit', 'convert', 'thickness', 'fill', 'startx',
 'starty', 'endx', 'endy']
 _CIRCLE_KEYS = ['posx', 'posy', 'radius', 'unit', 'convert',
 'thickness', 'fill']
 _POLY_KEYS = ['point_count', 'unit', 'convert', 'thickness', 'points',
 'fill']
 _RECT_KEYS = ['startx', 'starty', 'endx', 'endy', 'unit', 'convert',
 'thickness', 'fill']
 _TEXT_KEYS = ['direction', 'posx', 'posy', 'text_size', 'text_type',
 'unit', 'convert', 'text', 'italic', 'bold', 'hjustify',
 'vjustify']
 _PIN_KEYS = ['name', 'num', 'posx', 'posy', 'length', 'direction',
 'name_text_size', 'num_text_size', 'unit', 'convert',
 'electrical_type', 'pin_type']
 _DRAW_KEYS = {'arcs': _ARC_KEYS,
 'circles': _CIRCLE_KEYS,
 'polylines': _POLY_KEYS,
 'rectangles': _RECT_KEYS,
 'texts': _TEXT_KEYS,
 'pins': _PIN_KEYS}
 _DRAW_ELEMS = {'arcs': 'A',
 'circles': 'C',
 'polylines': 'P',
 'rectangles': 'S',
 'texts': 'T',
 'pins': 'X'}
 _KEYS = {'DEF': _DEF_KEYS,
 'F0': _F0_KEYS,
 'F': _FN_KEYS,
 'A': _ARC_KEYS,
 'C': _CIRCLE_KEYS,
 'P': _POLY_KEYS,
 'S': _RECT_KEYS,
 'T': _TEXT_KEYS,
 'X': _PIN_KEYS}

 # Return if there's nothing to do (i.e., part has already been parsed).
 if not self.part_defn:
 return

 self.fplist = [] # Footprint list.
 self.aliases = [] # Part aliases.
 building_fplist = False # True when working on footprint list in defn.
 building_draw = False # True when gathering part drawing from defn.

 # Go through the part definition line-by-line.
 for line in self.part_defn:

 # Split the line into words.
 line = line.replace('\n', '')
 s = shlex.shlex(line)
 s.whitespace_split = True
 s.commenters = ''
 s.quotes = '"'
 line = list(s) # Place the words in a list.

 # The first word indicates the type of part definition data that will follow.
 if line[0] in _KEYS:
 # Get the keywords for the current part definition data.
 key_list = _KEYS[line[0]]
 # Make a list of the values in the part data associated with each key.
 # Use an empty string for any missing values so every key will be
 # associated with something.
 values = line[1:] + [
 '' for n in range(len(key_list) - len(line[1:]))
]

 # Create a dictionary of part definition keywords and values.
 if line[0] == 'DEF':
 self.definition = dict(list(zip(_DEF_KEYS, values)))
 self.name = self.definition['name']

 # To handle libraries quickly, just get the name and
 # aliases and only parse the rest of the part definition later.
 if just_get_name:
 if self.aliases:
 # Name found, aliases already found so we're done.
 return
 # Name found so scan defn to see if aliases are present.
 # (The majority of parts don't have aliases.)
 for line in self.part_defn:
 if re.match(r'^\s*ALIAS\s', line):
 # Break and keep parsing defn if aliases are present.
 break
 else:
 # No aliases found, so part name is all that's needed.
 return

 # Create a dictionary of F0 part field keywords and values.
 elif line[0] == 'F0':
 self.fields = []
 self.fields.append(dict(list(zip(_F0_KEYS, values))))

 # Create a dictionary of the other part field keywords and values.
 elif line[0][0] == 'F':
 # Make a list of field values with empty strings for missing fields.
 values = line[1:] + [
 '' for n in range(len(_FN_KEYS) - len(line[1:]))
]
 self.fields.append(dict(list(zip(_FN_KEYS, values))))

 # Create a list of part aliases.
 elif line[0] == 'ALIAS':
 self.aliases = [alias for alias in line[1:]]
 if just_get_name and self.name:
 # Aliases found, name already found so we're done.
 return

 # Start the list of part footprints.
 elif line[0] == '$FPLIST':
 building_fplist = True
 self.fplist = []

 # End the list of part footprints.
 elif line[0] == '$ENDFPLIST':
 building_fplist = False

 # Start gathering the drawing primitives for the part symbol.
 elif line[0] == 'DRAW':
 building_draw = True
 self.draw = {
 'arcs': [],
 'circles': [],
 'polylines': [],
 'rectangles': [],
 'texts': [],
 'pins': []
 }

 # End the gathering of drawing primitives.
 elif line[0] == 'ENDDRAW':
 building_draw = False

 # Every other line is either a footprint or a drawing primitive.
 else:
 # If the footprint list is being built, then add this line to it.
 if building_fplist:
 self.fplist.append(line[0])

 # Else if the drawing primitives are being gathered, process the
 # current line to see what type of primitive is in play.
 elif building_draw:

 # Gather arcs.
 if line[0] == 'A':
 self.draw['arcs'].append(dict(list(zip(_ARC_KEYS,
 values))))

 # Gather circles.
 if line[0] == 'C':
 self.draw['circles'].append(dict(list(zip(_CIRCLE_KEYS,
 values))))

 # Gather polygons.
 if line[0] == 'P':
 n_points = int(line[1])
 points = line[5:5 + (2 * n_points)]
 values = line[1:5] + [points]
 if len(line) > (5 + len(points)):
 values += [line[-1]]
 else:
 values += ['']
 self.draw['polylines'].append(dict(list(zip(_POLY_KEYS,
 values))))

 # Gather rectangles.
 if line[0] == 'S':
 self.draw['rectangles'].append(dict(list(zip(
 _RECT_KEYS, values))))

 # Gather text.
 if line[0] == 'T':
 self.draw['texts'].append(dict(list(zip(_TEXT_KEYS,
 values))))

 # Gather the pin symbols. This is what we really want since
 # this defines the names, numbers and attributes of the
 # pins associated with the part.
 if line[0] == 'X':
 self.draw['pins'].append(dict(list(zip(_PIN_KEYS,
 values))))

 # Define some shortcuts to part information.
 self.num_units = int(
 self.definition['unit_count']) # # of units within the part.
 self.name = self.definition['name'] # Part name (e.g., 'LM324').
 self.ref_prefix = self.definition[
 'reference'] # Part ref prefix (e.g., 'R').

 # Clear the part reference field directly. Don't use the setter function
 # since it will try to generate and assign a unique part reference if
 # passed a value of None.
 self._ref = None

 # Make a Pin object from the information in the KiCad pin data fields.
 def kicad_pin_to_pin(kicad_pin):
 p = Pin()
 # Replicate the KiCad pin fields as attributes in the Pin object.
 # Note that this update will not give the pins valid references
 # to the current part, but we'll fix that soon.
 p.__dict__.update(kicad_pin)

 pin_type_translation = {'I': Pin.INPUT,
 'O': Pin.OUTPUT,
 'B': Pin.BIDIR,
 'T': Pin.TRISTATE,
 'P': Pin.PASSIVE,
 'U': Pin.UNSPEC,
 'W': Pin.PWRIN,
 'w': Pin.PWROUT,
 'C': Pin.OPENCOLL,
 'E': Pin.OPENEMIT,
 'N': Pin.NOCONNECT}
 p.func = pin_type_translation[p.electrical_type]

 return p

 self.pins = [kicad_pin_to_pin(p) for p in self.draw['pins']]

 # Make sure all the pins have a valid reference to this part.
 self._associate_pins()

 # Part definition has been parsed, so clear it out. This prevents a
 # part from being parsed more than once.
 self.part_defn = None

 def _associate_pins(self):
 """
 Make sure all the pins in a part have valid references to the part.
 """
 for p in self.pins:
 p.part = self

[docs] def copy(self, num_copies=1, dest=NETLIST, **attribs):
 """
 Make zero or more copies of this part while maintaining all pin/net
 connections.

 Args:
 num_copies: Number of copies to make of this part.
 dest: Indicates where the copy is destined for (e.g., NETLIST).

 Keyword Args:
 attribs: Name/value pairs for setting attributes for the copy.

 Returns:
 A list of Part copies or a single Part if num_copies==1.

 Raises:
 Exception if the requested number of copies is a non-integer or negative.

 Notes:
 An instance of a part can be copied just by calling it like so::

 res = Part('device','R') # Get a resistor.
 res_copy = res(value='1K') # Copy the resistor and set resistance value.

 You can also use the multiplication operator to make copies::

 cap = Part('device', 'C') # Get a capacitor
 caps = 10 * cap # Make an array with 10 copies of it.
 """

 num_copies = max(num_copies, _find_num_copies(**attribs))

 # Check that a valid number of copies is requested.
 if not isinstance(num_copies, int):
 logger.error(
 "Can't make a non-integer number ({}) of copies of a part!".format(
 num_copies))
 raise Exception
 if num_copies < 0:
 logger.error(
 "Can't make a negative number ({}) of copies of a part!".format(
 num_copies))
 raise Exception

 # Now make copies of the part one-by-one.
 copies = []
 for i in range(num_copies):

 # Make a shallow copy of the part.
 cpy = copy(self)

 # The shallow copy will just put references to the pins of the
 # original into the copy, so create independent copies of the pins.
 pin_copies = []
 for p in self.pins:
 pin_copies.append(p.copy())
 self.pins = pin_copies

 # Make sure all the pins have a reference to this new part copy.
 cpy._associate_pins()

 # Clear the part reference of the copied part so a unique reference
 # can be assigned when the part is added to the circuit.
 # (This is not strictly necessary since the part reference will be
 # adjusted to be unique if needed during the addition process.)
 cpy._ref = None

 # Enter any new attributes.
 for k, v in attribs.items():
 if isinstance(v, (list, tuple)):
 try:
 v = v[i]
 except IndexError:
 logger.error(
 "{} copies of part {} were requested, but too few elements in attribute {}!".format(
 num_copies, self.name, k))
 raise Exception
 setattr(cpy, k, v)

 # Add the part copy to the list of copies and then add the
 # part to the circuit netlist (if requested).
 copies.append(cpy)
 if dest == NETLIST:
 SubCircuit._add_part(cpy)

 return _list_or_scalar(copies)

 """Make copies with the multiplication operator or by calling the object."""
 __mul__ = copy
 __rmul__ = copy
 __call__ = copy

[docs] def get_pins(self, *pin_ids, **criteria):
 """
 Return list of part pins selected by pin numbers or names.

 Args:
 pin_ids: A list of strings containing pin names, numbers,
 regular expressions, slices, lists or tuples. If empty,
 then it will select all pins.

 Keyword Args:
 criteria: Key/value pairs that specify attribute values the
 pins must have in order to be selected.

 Returns:
 A list of pins matching the given IDs and satisfying all the criteria,
 or just a single Pin object if only a single match was found.
 Or None if no match was found.

 Notes:
 Pins can be selected from a part by using brackets like so::

 atmega = Part('atmel', 'ATMEGA16U2')
 net = Net()
 atmega[1] += net # Connects pin 1 of chip to the net.
 net += atmega['.*RESET.*'] # Connects reset pin to the net.
 """

 # If no pin identifiers were given, then use a wildcard that will
 # select all pins.
 if not pin_ids:
 pin_ids = ['.*']

 # Go through the list of pin IDs one-by-one.
 pins = _NetPinList()
 for p_id in _expand_indices(self.min_pin, self.max_pin, *pin_ids):

 # Does pin ID (either integer or string) match a pin number...
 tmp_pins = _filter(self.pins, num=str(p_id), **criteria)
 if tmp_pins:
 pins.extend(tmp_pins)
 continue

 # OK, pin ID is not a pin number. Does it match a pin name...
 tmp_pins = _filter(self.pins, name=p_id, **criteria)
 if tmp_pins:
 pins.extend(tmp_pins)
 continue

 # How about a pin alias...
 pin_alias = Alias(p_id, id(self))
 tmp_pins = _filter(self.pins, alias=pin_alias, **criteria)
 if tmp_pins:
 pins.extend(tmp_pins)
 continue

 # OK, does pin ID match a substring within a pin name...
 loose_p_id = ''.join(['.*', p_id, '.*'])
 tmp_pins = _filter(self.pins, name=loose_p_id, **criteria)
 if tmp_pins:
 pins.extend(tmp_pins)
 continue

 # Last chance: does pin ID match a substring within a pin alias...
 loose_pin_alias = Alias(loose_p_id, id(self))
 tmp_pins = _filter(self.pins, alias=loose_pin_alias, **criteria)
 if tmp_pins:
 pins.extend(tmp_pins)
 continue

 return _list_or_scalar(pins)

 # Get pins from a part using brackets, e.g. [1,5:9,'A[0-9]+'].
 __getitem__ = get_pins

[docs] def __setitem__(self, ids, *pins_nets_buses):
 """
 You can't assign to the pins of parts. You must use the += operator.

 This method is a work-around that allows the use of the += for making
 connections to pins while prohibiting direct assignment. Python
 processes something like my_part['GND'] += gnd as follows::

 1. Part.__getitem__ is called with 'GND' as the index. This
 returns a single Pin or a NetPinList.
 2. The Pin.__iadd__ or NetPinList.__iadd__ method is passed
 the thing to connect to the pin (gnd in this case). This method
 makes the actual connection to the part pin or pins. Then it
 creates an iadd_flag attribute in the object it returns.
 3. Finally, Part.__setitem__ is called. If the iadd_flag attribute
 is true in the passed argument, then __setitem__ was entered
 as part of processing the += operator. If there is no
 iadd_flag attribute, then __setitem__ was entered as a result
 of using a direct assignment, which is not allowed.
 """

 # If the iadd_flag is set, then it's OK that we got
 # here and don't issue an error. Also, delete the flag.
 if getattr(pins_nets_buses[0], 'iadd_flag', False):
 del pins_nets_buses[0].iadd_flag
 return

 # No iadd_flag or it wasn't set. This means a direct assignment
 # was made to the pin, which is not allowed.
 logger.error("Can't assign to a part! Use the += operator.")
 raise Exception

 def _is_connected(self):
 """
 Return T/F depending upon whether a part is connected in a netlist.

 If a part has pins but none of them are connected to nets, then
 this method will return False. Otherwise, it will return True even if
 the part has no pins (which can be the case for mechanical parts,
 silkscreen logos, or other non-electrical schematic elements).
 """

 # Assume parts without pins (like mech. holes) are always connected.
 if len(self.pins) == 0:
 return True

 # If any pin is found to be connected to a net, return True.
 for p in self.pins:
 if p._is_connected():
 return True

 # No net connections found, so return False.
 return False

 def set_pin_alias(self, alias, *pin_ids, **criteria):
 pins = _to_list(self.get_pins(*pin_ids, **criteria))
 if not pins:
 logger.error("Trying to alias a non-existent pin.")
 if len(pins) > 1:
 logger.error("Trying to give more than one pin the same alias.")
 raise Exception
 for pin in pins:
 pin.alias = Alias(alias, id(self))

[docs] def make_unit(self, label, *pin_ids, **criteria):
 """
 Create a PartUnit from a set of pins in a Part object.

 Parts can be organized into smaller pieces called PartUnits. A PartUnit
 acts like a Part but contains only a subset of the pins of the Part.

 Args:
 label: The label used to identify the PartUnit.
 pin_ids: A list of strings containing pin names, numbers,
 regular expressions, slices, lists or tuples.

 Keyword Args:
 criteria: Key/value pairs that specify attribute values the
 pin must have in order to be selected.

 Returns:
 The PartUnit.
 """

 collisions = self.get_pins(label)
 if collisions:
 logger.warning("Using a label ({}) for a unit of {} that matches one or more of it's pin names ({})!".format(label, self._erc_desc(), collisions))
 self.unit[label] = PartUnit(self, *pin_ids, **criteria)
 return self.unit[label]

 def _get_fields(self):
 """
 Return a list of component field names.
 """

 # Get all the component attributes and subtract all the ones that
 # should not appear under "fields" in the netlist or XML.
 fields = set(self.__dict__.keys())
 non_fields = set(['name', 'min_pin','max_pin','hierarchy','_value',
 '_ref','ref_prefix','unit','num_units','part_defn',
 'definition','fields','draw','lib','fplist',
 'do_erc','aliases','tool','pins','footprint'])
 return list(fields-non_fields)

 def _generate_netlist_component(self, tool=KICAD):
 """
 Generate the part information for inclusion in a netlist.

 Args:
 tool: The format for the netlist file (e.g., KICAD).
 """

 try:
 gen_func = self.__class__.__dict__['_gen_netlist_comp_{}'.format(
 tool)]
 return gen_func(self)
 except KeyError:
 logger.error(
 "Can't generate netlist in an unknown ECAD tool format ({}).".format(
 format))
 raise Exception

 def _gen_netlist_comp_kicad(self):
 ref = _add_quotes(self.ref)

 try:
 value = self.value
 if not value:
 value = self.name
 except AttributeError:
 try:
 value = self.name
 except AttributeError:
 value = self.ref_prefix
 value = _add_quotes(value)

 try:
 footprint = self.footprint
 except AttributeError:
 logger.error('No footprint for {part}/{ref}.'.format(
 part=self.name, ref=ref))
 footprint = 'No Footprint'
 footprint = _add_quotes(footprint)

 lib = _add_quotes(self.lib)
 name = _add_quotes(self.name)

 fields = ''
 for fld_name in self._get_fields():
 fld_value = _add_quotes(self.__dict__[fld_name])
 fld_name = _add_quotes(fld_name)
 fields += '\n (field (name {fld_name}) {fld_value})'.format(**locals())
 if fields:
 fields = ' (fields' + fields
 fields += ')\n'

 template = ' (comp (ref {ref})\n' + \
 ' (value {value})\n' + \
 ' (footprint {footprint})\n' + \
 '{fields}' + \
 ' (libsource (lib {lib}) (part {name})))'
 txt = template.format(**locals())
 return txt

 def _generate_xml_component(self, tool=KICAD):
 """
 Generate the part information for inclusion in an XML file.

 Args:
 tool: The format for the XML file (e.g., KICAD).
 """

 try:
 gen_func = self.__class__.__dict__['_gen_xml_comp_{}'.format(
 tool)]
 return gen_func(self)
 except KeyError:
 logger.error(
 "Can't generate XML in an unknown ECAD tool format ({}).".format(
 format))
 raise Exception

 def _gen_xml_comp_kicad(self):
 ref = self.ref

 try:
 value = self.value
 if not value:
 value = self.name
 except AttributeError:
 try:
 value = self.name
 except AttributeError:
 value = self.ref_prefix

 try:
 footprint = self.footprint
 except AttributeError:
 logger.error('No footprint for {part}/{ref}.'.format(
 part=self.name, ref=ref))
 footprint = 'No Footprint'

 lib = self.lib
 name = self.name

 fields = ''
 for fld_name in self._get_fields():
 fld_value = self.__dict__[fld_name]
 fields += '\n <field name="{fld_name}">{fld_value}</field>'.format(**locals())
 if fields:
 fields = ' <fields>' + fields
 fields += '\n </fields>\n'

 template = ' <comp ref="{ref}">\n' + \
 ' <value>{value}</value>\n' + \
 ' <footprint>{footprint}</footprint>\n' + \
 '{fields}' + \
 ' <libsource lib="{lib}" part="{name}"/>\n' + \
 ' </comp>'
 txt = template.format(**locals())
 return txt

 def _erc(self):
 """
 Do electrical rules check on a part in the schematic.
 """

 # Don't check this part if the flag is not true.
 if not self.do_erc:
 return

 # Check each pin of the part.
 for p in self.pins:

 # Skip this pin if the flag is false.
 if not p.do_erc:
 continue

 # Error if a pin is unconnected but not of type NOCONNECT.
 if p.net is None:
 if p.func != Pin.NOCONNECT:
 erc_logger.warning('Unconnected pin: {p}.'.format(
 p=p._erc_desc()))

 # Error if a no-connect pin is connected to a net.
 elif p.net.drive != Pin.NOCONNECT_DRIVE:
 if p.func == Pin.NOCONNECT:
 erc_logger.warning(
 'Incorrectly connected pin: {p} should not be connected to a net ({n}).'.format(
 p=p._erc_desc(), n=p.net.name))

 def _erc_desc(self):
 """Create description of part for ERC and other error reporting."""
 return "{p.name}/{p.ref}".format(p=self)

[docs] def __str__(self):
 """Return a description of the pins on this part as a string."""
 return '\n' + self.name + ':\n\t' + '\n\t'.join(
 [p.__str__() for p in self.pins])

 __repr__ = __str__

 @property
 def ref(self):
 """
 Get, set and delete the part reference.

 When setting the part reference, if another part with the same
 reference is found, the reference for this part is adjusted to make
 it unique.
 """
 return self._ref

 @ref.setter
 def ref(self, r):
 # Remove the existing reference so it doesn't cause a collision if the
 # object is renamed with its existing name.
 self._ref = None

 # Now name the object with the given reference or some variation
 # of it that doesn't collide with anything else in the list.
 self._ref = _get_unique_name(SubCircuit.parts, 'ref', self.ref_prefix,
 r)
 return

 @ref.deleter
 def ref(self):
 """Delete the part reference."""
 self._ref = None

 @property
 def value(self):
 """Get, set and delete the part value."""
 try:
 return self._value
 except AttributeError:
 # If part has no value, return its part name as the value. This is
 # done in KiCad where a resistor value is set to 'R' if no
 # explicit value was set.
 return self.name

 @value.setter
 def value(self, value):
 """Set the part value."""
 self._value = str(value)

 @value.deleter
 def value(self):
 """Delete the part value."""
 del self._value

 @property
 def foot(self):
 """Get, set and delete the part footprint."""
 return self._foot

 @foot.setter
 def foot(self, footprint):
 """Set the part footprint."""
 self._foot = str(footprint)

 @foot.deleter
 def foot(self):
 """Delete the part footprint."""
 del self._foot

##

[docs]class PartUnit(Part):
 """
 Create a PartUnit from a set of pins in a Part object.

 Parts can be organized into smaller pieces called PartUnits. A PartUnit
 acts like a Part but contains only a subset of the pins of the Part.

 Args:
 part: This is the parent Part whose pins the PartUnit is built from.
 pin_ids: A list of strings containing pin names, numbers,
 regular expressions, slices, lists or tuples.

 Keyword Args:
 criteria: Key/value pairs that specify attribute values the
 pin must have in order to be selected.

 Examples:
 This will return unit 1 from a part::

 lm358 = Part('linear','lm358')
 lm358a = PartUnit(lm358, unit=1)

 Or you can specify the pins directly::

 lm358a = PartUnit(lm358, 1, 2, 3)
 """

 def __init__(self, part, *pin_ids, **criteria):
 # Remember the part that this unit belongs to.
 self.parent = part

 # Give the PartUnit the same information as the Part it is generated
 # from so it can act the same way, just with fewer pins.
 for k, v in part.__dict__.items():
 self.__dict__[k] = v

 # Remove the pins copied from the parent and replace them with
 # pins selected from the parent.
 self.pins = []
 self._add_pins(*pin_ids, **criteria)

 def _add_pins(self, *pin_ids, **criteria):
 """
 Add selected pins from the parent to the part unit.
 """
 try:
 unique_pins = set(self.pins)
 except (AttributeError, TypeError):
 unique_pins = set()
 unique_pins |= set(_to_list(self.parent.get_pins(*pin_ids, **
 criteria)))
 self.pins = list(unique_pins)

##

[docs]class Net(object):
 """
 Lists of connected pins are stored as nets using this class.

 Args:
 name: A string with the name of the net. If None or '', then
 a unique net name will be assigned.
 *pins_nets_buses: One or more Pin, Net, or Bus objects or
 lists/tuples of them to be connected to this net.

 Keyword Args:
 attribs: A dictionary of attributes and values to attach to
 the Net object.
 """

 def __init__(self, name=None, *pins_nets_buses, **attribs):
 self._valid = True # Make net valid before doing anything else.
 self._name = None
 if name:
 self.name = name
 self.do_erc = True
 self._drive = Pin.NO_DRIVE
 self.pins = []

 # Attach whatever pins were given.
 self.connect(pins_nets_buses)
 del self.iadd_flag # Remove the += flag inserted by connect().

 # Attach additional attributes to the net.
 for k, v in attribs.items():
 setattr(self, k, v)

 def _traverse(self):
 """Return all the nets and pins attached to this net, including itself."""
 self.test_validity()
 prev_nets = set([self])
 nets = set([self])
 prev_pins = set([])
 pins = set(self.pins)
 while pins != prev_pins:

 # Add the nets attached to any unvisited pins.
 for pin in pins - prev_pins:
 # No use visiting a pin that is not connected to a net.
 if pin._is_connected():
 nets |= set(pin._get_nets())

 # Update the set of previously visited pins.
 prev_pins = copy(pins)

 # Add the pins attached to any unvisited nets.
 for net in nets - prev_nets:
 pins |= set(net.pins)

 # Update the set of previously visited nets.
 prev_nets = copy(nets)

 return list(nets), list(pins)

 def _get_pins(self):
 """Return a list of pins attached to this net."""
 self.test_validity()
 return self._traverse()[1]

 def _get_nets(self):
 """Return a list of nets attached to this net, including this net."""
 self.test_validity()
 return self._traverse()[0]

 def _is_attached(self, pin_net_bus):
 """Return true if the net is attached to this one."""
 if isinstance(pin_net_bus, Net):
 return pin_net_bus in self._get_nets()
 if isinstance(pin_net_bus, Pin):
 return pin_net_bus._is_attached(self)
 if isinstance(pin_net_bus, Bus):
 for net in pin_net_bus[:]:
 if self._is_attached(net):
 return True
 return False
 logger.error("Nets can't be attached to {}!".format(type(pin_net_bus)))
 raise Exception

[docs] def copy(self, num_copies=1, **attribs):
 """
 Make zero or more copies of this net.

 Args:
 num_copies: Number of copies to make of this net.

 Keyword Args:
 attribs: Name/value pairs for setting attributes for the copy.

 Returns:
 A list of Net copies or a Net if num_copies==1.

 Raises:
 Exception if the requested number of copies is a non-integer or negative.

 Notes:
 An instance of a net can be copied just by calling it like so::

 n = Net('A') # Create a net.
 n_copy = n() # Copy the net.

 You can also use the multiplication operator to make copies::

 n = 10 * Net('A') # Create an array of nets.
 """

 self.test_validity()

 num_copies = max(num_copies, _find_num_copies(**attribs))

 # Check that a valid number of copies is requested.
 if not isinstance(num_copies, int):
 logger.error(
 "Can't make a non-integer number ({}) of copies of a net!".format(
 num_copies))
 raise Exception
 if num_copies < 0:
 logger.error(
 "Can't make a negative number ({}) of copies of a net!".format(
 num_copies))
 raise Exception

 # Can't make a distinct copy of a net which already has pins on it
 # because what happens if a pin is connected to the copy? Then we have
 # to search for all the other copies to add the pin to those.
 # And what's the value of that?
 if self.pins:
 logger.error(
 "Can't make copies of a net that already has pins attached to it!")
 raise Exception

 # Now make copies of the net one-by-one.
 copies = [deepcopy(self) for i in range(num_copies)]

 # Enter new attributes into each copy.
 for i, cpy in enumerate(copies):
 for k, v in attribs.items():
 if isinstance(v, (list, tuple)):
 try:
 v = v[i]
 except IndexError:
 logger.error(
 "{} copies of net {} were requested, but too few elements in attribute {}!".format(
 num_copies, self.name, k))
 raise Exception
 setattr(cpy, k, v)

 return _list_or_scalar(copies)

 """Make copies with the multiplication operator or by calling the object."""
 __mul__ = copy
 __rmul__ = copy
 __call__ = copy

 def _is_implicit(self, net_name=None):
 """Return true if the net name is implicit."""
 self.test_validity()
 if net_name:
 return re.match(re.escape(NET_PREFIX), net_name)
 if self.name:
 return re.match(re.escape(NET_PREFIX), self.name)
 return True

[docs] def connect(self, *pins_nets_buses):
 """
 Return the net after connecting other pins, nets, and buses to it.

 Args:
 *pins_nets_buses: One or more Pin, Net, or Bus objects or
 lists/tuples of them to be connected to this net.

 Returns:
 The updated net with the new connections.

 Notes:
 Connections to nets can also be made using the += operator like so::

 atmega = Part('atmel', 'ATMEGA16U2')
 net = Net()
 net += atmega[1] # Connects pin 1 of chip to the net.
 """

 def merge(net):
 """
 Merge pins on net with self and then delete net.

 Args:
 net: The net to merge with self.
 """

 if isinstance(self, _NCNet):
 logger.error("Can't merge with a no-connect net {}!".format(
 self.name))
 raise Exception

 if isinstance(net, _NCNet):
 logger.error("Can't merge with a no-connect net {}!".format(
 net.name))
 raise Exception

 # No need to do anything if merging a net with itself.
 if self == net:
 return

 # If this net has pins, just attach the other net to one of them.
 if self.pins:
 self.pins[0].nets.append(net)
 net.pins.append(self.pins[0])
 # If the other net has pins, attach this net to a pin on the other net.
 elif net.pins:
 net.pins[0].nets.append(self)
 self.pins.append(net.pins[0])

 # Update the drive of the merged nets.
 self.drive = net.drive
 net.drive = self.drive

 def select_name(name1, name2):
 """Select one name or the other for the merged net."""
 if not name2:
 return name1
 if not name1:
 return name2
 if self._is_implicit(name2):
 return name1
 if self._is_implicit(name1):
 return name2
 logger.warning(
 'Merging two named nets ({a} and {b}) into {a}.'.format(
 a=name1, b=name2))
 return name1

 # Give the merged net the name of one of the nets.
 # Bypass the unique naming function because all the
 # net names should already have unique names.
 name = select_name(self.name, net.name)
 self._name = name
 net._name = name

 def connect_pin(pin):
 """Connect a pin to this net."""
 if pin not in self.pins:
 if not pin._is_connected():
 # Remove the pin from the no-connect net if it is attached to it.
 pin._disconnect()
 self.pins.append(pin)
 pin.nets.append(self)
 return

 self.test_validity()

 # Go through all the pins and/or nets and connect them to this net.
 for pn in _expand_buses(_flatten(pins_nets_buses)):
 if isinstance(pn, Net):
 merge(pn)
 elif isinstance(pn, Pin):
 connect_pin(pn)
 else:
 logger.error(
 'Cannot attach non-Pin/non-Net {} to Net {}.'.format(
 type(pn), self.name))
 raise Exception

 # Add the net to the global netlist. (It won't be added again
 # if it's already there.)
 SubCircuit._add_net(self)

 # Set the flag to indicate this result came from the += operator.
 self.iadd_flag = True

 return self

 # Use += to connect to nets.
 __iadd__ = connect

 def _disconnect(self, pin):
 """Remove the pin from this net but not any other nets it's attached to."""
 try:
 self.pins.remove(pin)
 except ValueError:
 pass

 def _generate_netlist_net(self, tool=KICAD):
 """
 Generate the net information for inclusion in a netlist.

 Args:
 tool: The format for the netlist file (e.g., KICAD).
 """
 self.test_validity()

 try:
 gen_func = self.__class__.__dict__['_gen_netlist_net_{}'.format(
 tool)]
 return gen_func(self)
 except KeyError:
 logger.error(
 "Can't generate netlist in an unknown ECAD tool format ({}).".format(
 format))
 raise Exception

 def _gen_netlist_net_kicad(self):
 code = _add_quotes(self.code)
 name = _add_quotes(self.name)
 txt = ' (net (code {code}) (name {name})'.format(**locals())
 for p in self._get_pins():
 part_ref = _add_quotes(p.part.ref)
 pin_num = _add_quotes(p.num)
 txt += '\n (node (ref {part_ref}) (pin {pin_num}))'.format(**locals())
 txt += ')'
 return txt

 def _generate_xml_net(self, tool=KICAD):
 """
 Generate the net information for inclusion in an XML file.

 Args:
 tool: The format for the XML file (e.g., KICAD).
 """
 self.test_validity()

 try:
 gen_func = self.__class__.__dict__['_gen_xml_net_{}'.format(
 tool)]
 return gen_func(self)
 except KeyError:
 logger.error(
 "Can't generate XML in an unknown ECAD tool format ({}).".format(
 format))
 raise Exception

 def _gen_xml_net_kicad(self):
 code = self.code
 name = self.name
 txt = ' <net code="{code}" name="{name}">'.format(**locals())
 for p in self._get_pins():
 part_ref = p.part.ref
 pin_num = p.num
 txt += '\n <node ref="{part_ref}" pin="{pin_num}"/>'.format(**locals())
 txt += '\n </net>'
 return txt

 def _erc(self):
 """
 Do electrical rules check on a net in the schematic.
 """

 def pin_conflict_chk(pin1, pin2):
 """
 Check for conflict/contention between two pins on the same net.
 """

 if not pin1.do_erc or not pin2.do_erc:
 return

 erc_result = SubCircuit._erc_pin_to_pin_chk(pin1, pin2)

 # Return if the pins are compatible.
 if erc_result == SubCircuit.OK:
 return

 # Otherwise, generate an error or warning message.
 msg = 'Pin conflict on net {n}: {p1} <==> {p2}'.format(
 n=pin1.net.name,
 p1=pin1._erc_desc(),
 p2=pin2._erc_desc())
 if erc_result == SubCircuit.WARNING:
 erc_logger.warning(msg)
 else:
 erc_logger.error(msg)

 def net_drive_chk():
 """
 Check the drive level on the net to see if it is within bounds.
 """

 # Find the maximum signal driver on this net.
 net_drive = self.drive # Start with user-set drive level.
 pins = self._get_pins()
 for p in pins:
 net_drive = max(net_drive, Pin.pin_info[p.func]['drive'])

 if net_drive <= Pin.NO_DRIVE:
 erc_logger.warning('No drivers for net {n}'.format(
 n=self.name))
 for p in pins:
 if Pin.pin_info[p.func]['min_rcv'] > net_drive:
 erc_logger.warning(
 'Insufficient drive current on net {n} for pin {p}'.format(
 n=self.name, p=p._erc_desc()))

 self.test_validity()

 # Skip ERC check on this net if flag is cleared.
 if not self.do_erc:
 return

 # Check the number of pins attached to the net.
 pins = self._get_pins()
 num_pins = len(pins)
 if num_pins == 0:
 erc_logger.warning('No pins attached to net {n}.'.format(
 n=self.name))
 elif num_pins == 1:
 erc_logger.warning(
 'Only one pin ({p}) attached to net {n}.'.format(p=pins[
 0]._erc_desc(), n=self.name))
 else:
 for i in range(num_pins):
 for j in range(i + 1, num_pins):
 pin_conflict_chk(pins[i], pins[j])

 # Check to see if the net has sufficient drive.
 net_drive_chk()

[docs] def __str__(self):
 """Return a list of the pins on this net as a string."""
 self.test_validity()
 pins = self._get_pins()
 return self.name + ': ' + ', '.join([p.__str__() for p in pins])

 __repr__ = __str__

[docs] def __len__(self):
 """Return the number of pins attached to this net."""
 self.test_validity()
 pins = self._get_pins()
 return len(pins)

 @property
 def name(self):
 """
 Get, set and delete the name of this net.

 When setting the net name, if another net with the same name
 is found, the name for this net is adjusted to make it unique.
 """
 return self._name

 @name.setter
 def name(self, name):
 self.test_validity()
 # Remove the existing name so it doesn't cause a collision if the
 # object is renamed with its existing name.
 self._name = None

 # Now name the object with the given name or some variation
 # of it that doesn't collide with anything else in the list.
 self._name = _get_unique_name(SubCircuit.nets, 'name', NET_PREFIX,
 name)

 @name.deleter
 def name(self):
 self.test_validity()
 del self._name

 @property
 def drive(self):
 """
 Get, set and delete the drive strength of this net.

 The drive strength cannot be set to a value less than its current
 value. So as pins are added to a net, the drive strength reflects the
 maximum drive value of the pins currently on the net.
 """
 self.test_validity()
 return self._drive

 @drive.setter
 def drive(self, drive):
 self.test_validity()
 self._drive = max(drive, self._drive)

 @drive.deleter
 def drive(self):
 self.test_validity()
 del self._drive

 @property
 def valid(self):
 return self._valid

 @valid.setter
 def valid(self, val):
 self.test_validity()
 self._valid = val

 def test_validity(self):
 if self.valid:
 return
 logger.error('Net {} is no longer valid. Do not use it!'.format(self.name))
 raise Exception

##

class _NCNet(Net):
 """
 Lists of unconnected pins are stored using this Net subclass.

 This is a netlist subclass used for storing lists of pins which are
 explicitly specified as not being connected. This means the ERC won't
 flag these pins as floating, but no net connections for these pins
 will be placed in the netlist so there will actually be no
 connections to these pins in the physical circuit.

 Args:
 name: A string with the name of the net. If None or '', then
 a unique net name will be assigned.
 *pins_nets_buses: One or more Pin, Net, or Bus objects or
 lists/tuples of them to be connected to this net.

 Keyword Args:
 attribs: A dictionary of attributes and values to attach to
 the object.
 """

 def __init__(self, name=None, *pins_nets_buses, **attribs):
 super(_NCNet, self).__init__(name, *pins_nets_buses, **attribs)
 self._drive = Pin.NOCONNECT_DRIVE

 def _generate_netlist_net(self, tool=KICAD):
 """NO_CONNECT nets don't generate anything for netlists."""
 return ''

 def _erc(self):
 """No need to check NO_CONNECT nets."""
 pass

 @property
 def drive(self):
 """
 Get the drive strength of this net.

 The drive strength is always NOCONNECT_DRIVE. It can't be changed.
 The drive strength cannot be deleted.
 """
 return self._drive

##

[docs]class Bus(object):
 """
 This class collects one or more nets into a group that can be indexed.

 Args:
 name: A string with the name of the bus.
 args: A list of ints, pins, nets, buses to attach to the net.

 Keyword Args:
 attribs: A dictionary of attributes and values to attach to
 the Net object.

 Example:
 ::

 n = Net()
 led1 = Part('device', 'LED')
 b = Bus('B', 8, n, led1['K'])
 """

 def __init__(self, name, *args, **attribs):
 self.name = name

 # Build the bus from net widths, existing nets, nets of pins, other buses.
 self.nets = []
 for arg in _flatten(args):
 if isinstance(arg, int):
 # Add a number of new nets to the bus.
 self.nets.extend(arg * Net())
 elif isinstance(arg, Net):
 # Add an existing net to the bus.
 self.nets.append(arg)
 elif isinstance(arg, Pin):
 # Add a pin to the bus.
 try:
 # Add the pin's net to the bus.
 self.nets.append(arg._get_nets()[0])
 except IndexError:
 # OK, the pin wasn't already connected to a net,
 # so create a new net, add it to the bus, and
 # connect the pin to it.
 n = Net()
 n += arg
 self.nets.append(n)
 elif isinstance(arg, Bus):
 # Add an existing bus to this bus.
 self.nets.extend(arg.nets)

 # Assign names to all the unnamed nets in the bus.
 for i, net in enumerate(self.nets):
 if net._is_implicit():
 # Net names are the bus name with the index appended.
 net.name = self.name + str(i)

 # Attach additional attributes to the bus.
 for k, v in attribs.items():
 setattr(self, k, v)

 def _get_nets(self):
 """Return the list of nets contained in this bus."""
 return _to_list(self.nets)

 def _get_pins(self):
 """It's an error to get the list of pins attached to all bus lines."""
 logger.error("Can't get the list of pins on a bus!")
 raise Exception

[docs] def copy(self, num_copies=1, **attribs):
 """
 Make zero or more copies of this bus.

 Args:
 num_copies: Number of copies to make of this bus.

 Keyword Args:
 attribs: Name/value pairs for setting attributes for the copy.

 Returns:
 A list of Bus copies or a Bus if num_copies==1.

 Raises:
 Exception if the requested number of copies is a non-integer or negative.

 Notes:
 An instance of a bus can be copied just by calling it like so::

 b = Bus('A', 8) # Create a bus.
 b_copy = b(2) # Get two copies of the bus.

 You can also use the multiplication operator to make copies::

 b = 10 * Bus('A', 8) # Create an array of buses.
 """

 # Check that a valid number of copies is requested.
 if not isinstance(num_copies, int):
 logger.error(
 "Can't make a non-integer number ({}) of copies of a bus!".format(
 num_copies))
 raise Exception
 if num_copies < 0:
 logger.error(
 "Can't make a negative number ({}) of copies of a bus!".format(
 num_copies))
 raise Exception

 copies = []
 for i in range(num_copies):

 cpy = Bus(self)

 # Attach additional attributes to the bus.
 for k, v in attribs.items():
 if isinstance(v, (list, tuple)):
 try:
 v = v[i]
 except IndexError:
 logger.error(
 "{} copies of bus {} were requested, but too few elements in attribute {}!".format(
 num_copies, self.name, k))
 raise Exception
 setattr(cpy, k, v)

 copies.append(cpy)

 return _list_or_scalar(copies)

 """Make copies with the multiplication operator or by calling the object."""
 __mul__ = copy
 __rmul__ = copy
 __call__ = copy

[docs] def __getitem__(self, *ids):
 """
 Return a bus made up of the nets at the given indices.

 Args:
 ids: A list of indices of bus lines. These can be individual
 numbers, net names, nested lists, or slices.

 Returns:
 A bus if the indices are valid, otherwise None.
 """

 # Use the indices to get the nets from the bus.
 nets = []
 for ident in _expand_indices(0, len(self) - 1, ids):
 if isinstance(ident, int):
 nets.append(self.nets[ident])
 elif isinstance(ident, basestring):
 nets.extend(_filter(self.nets, name=ident))
 else:
 logger.error("Can't index bus with a {}.".format(type(ident)))
 raise Exception

 if len(nets) == 0:
 # No nets were selected from the bus, so return None.
 return None
 if len(nets) == 1:
 # Just one net selected, so return the Net object.
 return nets[0]
 else:
 # Multiple nets selected, so return them as a NetPinList list.
 return _NetPinList(nets)

[docs] def __setitem__(self, ids, *pins_nets_buses):
 """
 You can't assign to bus lines. You must use the += operator.

 This method is a work-around that allows the use of the += for making
 connections to bus lines while prohibiting direct assignment. Python
 processes something like my_bus[7:0] += 8 * Pin() as follows::

 1. Part.__getitem__ is called with '7:0' as the index. This
 returns a NetPinList of eight nets from my_bus.
 2. The NetPinList.__iadd__ method is passed the NetPinList and
 the thing to connect to the it (eight pins in this case). This
 method makes the actual connection to the part pin or pins. Then
 it creates an iadd_flag attribute in the object it returns.
 3. Finally, Bus.__setitem__ is called. If the iadd_flag attribute
 is true in the passed argument, then __setitem__ was entered
 as part of processing the += operator. If there is no
 iadd_flag attribute, then __setitem__ was entered as a result
 of using a direct assignment, which is not allowed.
 """

 # If the iadd_flag is set, then it's OK that we got
 # here and don't issue an error. Also, delete the flag.
 if getattr(pins_nets_buses[0], 'iadd_flag', False):
 del pins_nets_buses[0].iadd_flag
 return

 # No iadd_flag or it wasn't set. This means a direct assignment
 # was made to the pin, which is not allowed.
 logger.error("Can't assign to a bus! Use the += operator.")
 raise Exception

[docs] def connect(self, *pins_nets_buses):
 """
 Return the bus after connecting one or more nets, pins, or buses.

 Args:
 pins_nets_buses: One or more Pin, Net or Bus objects or
 lists/tuples of them.

 Returns:
 The updated bus with the new connections.

 Notes:
 You can connect nets or pins to a bus like so::

 p = Pin() # Create a pin.
 n = Net() # Create a net.
 b = Bus('B', 2) # Create a two-wire bus.
 b += p,n # Connect pin and net to B[0] and B[1].
 """
 nets = _NetPinList(self.nets)
 nets += pins_nets_buses
 return self

 __iadd__ = connect

 @property
 def name(self):
 """
 Get, set and delete the name of the bus.

 When setting the bus name, if another bus with the same name
 is found, the name for this bus is adjusted to make it unique.
 """
 return self._name

 @name.setter
 def name(self, name):
 # Remove the existing name so it doesn't cause a collision if the
 # object is renamed with its existing name.
 self._name = None

 # Now name the object with the given name or some variation
 # of it that doesn't collide with anything else in the list.
 self._name = _get_unique_name(SubCircuit.buses, 'name', BUS_PREFIX,
 name)

 @name.deleter
 def name(self):
 """Delete the bus name."""
 del self._name

[docs] def __str__(self):
 """Return a list of the nets in this bus as a string."""
 return self.name + ':\n\t' + '\n\t'.join([n.__str__() for n in self.nets])

 __repr__ = __str__

[docs] def __len__(self):
 """Return the number of nets in this bus."""
 return len(self.nets)

##

class _NetPinList(list):

 def __iadd__(self, *nets_pins_buses):

 nets_pins = []
 for item in _expand_buses(_flatten(nets_pins_buses)):
 if isinstance(item, (Pin, Net)):
 nets_pins.append(item)
 else:
 logger.error("Can't make connections to a {} ({}).".format(
 type(id), item.__name__))
 raise Exception

 if len(nets_pins) != len(self):
 if Net in [type(item) for item in self] or len(nets_pins) > 1:
 logger.error(
 "Connection mismatch {} != {}!".format(
 len(self), len(nets_pins)))
 raise Exception

 # If just a single net is to be connected, make a list out of it that's
 # just as long as the list of pins to connect to. This will connect
 # multiple pins to the same net.
 if len(nets_pins) == 1:
 nets_pins = [nets_pins[0] for _ in range(len(self))]

 # Connect the nets to the nets in the bus.
 for i, np in enumerate(nets_pins):
 self[i] += np

 # Set the flag to indicate this result came from the += operator.
 self.iadd_flag = True

 return self

##

[docs]class SubCircuit(object):
 """
 Class object that holds the entire netlist of parts and nets. This is
 initialized once when the module is first imported and then all parts
 and nets are added to its static members.

 Attributes:
 parts: List of all the schematic parts as Part objects.
 nets: List of all the schematic nets as Net objects.
 hierarchy: A '.'-separated concatenation of the names of nested
 SubCircuits at the current time it is read.
 level: The current level in the schematic hierarchy.
 context: Stack of contexts for each level in the hierarchy.
 circuit_func: The function that creates a given subcircuit.
 """

 OK, WARNING, ERROR = range(3)

 parts = []
 nets = []
 buses = []
 hierarchy = 'top'
 level = 0
 context = [('top',)]

 @classmethod
 def _reset(cls):
 """Clear any circuitry and start over."""
 cls.parts = []
 cls.nets = []
 cls.hierarchy = 'top'
 cls.level = 0
 cls.context = [('top',)]

 @classmethod
 def _add_part(cls, part):
 """Add a Part object to the circuit"""
 part.ref = part.ref # This adjusts the part reference if necessary.
 part.hierarchy = cls.hierarchy # Tag the part with its hierarchy position.
 cls.parts.append(part)

 @classmethod
 def _add_net(cls, net):
 """Add a Net object to the circuit. Assign a net name if necessary."""
 if net in cls.nets or len(net.pins) == 0:
 return
 net.name = net.name
 net.hierarchy = cls.hierarchy # Tag the net with its hierarchy position.
 cls.nets.append(net)

 @classmethod
 def _get_nets(cls):
 """Get all the distinct nets for the circuit."""
 distinct_nets = []
 for net in cls.nets:
 for n in distinct_nets:
 # Exclude net if its already attached to a previously selected net.
 if net._is_attached(n):
 break
 else:
 # This net is not attached to any of the other distinct nets,
 # so it is also distinct.
 distinct_nets.append(net)
 return distinct_nets

 @classmethod
 def _delete_net(cls, net):
 """Delete net from circuit."""
 if net in cls.nets:
 cls.nets.remove(net)
 del net

 @classmethod
 def _add_bus(cls, bus):
 """Add a Bus object to the circuit. Assign a bus name if necessary."""
 bus.name = bus.name
 bus.hierarchy = cls.hierarchy # Tag the bus with its hierarchy position.
 cls.buses.append(bus)

 def __init__(self, circuit_func):
 """
 When you place the @SubCircuit decorator before a function, this method
 stores the reference to the subroutine into the SubCircuit object.
 """

 self.circuit_func = circuit_func

[docs] def __call__(self, *args, **kwargs):
 """
 This method is called when you invoke the SubCircuit object to create
 some schematic circuitry.
 """

 # Invoking the SubCircuit object creates circuitry at a level one
 # greater than the current level. (The top level is zero.)
 self.level += 1

 # Create a name for this SubCircuit from the concatenated names of all
 # the SubCircuit functions that were called on all the preceding levels
 # that led to this one.
 self.__class__.hierarchy = self.context[-1][
 0] + '.' + self.circuit_func.__name__

 # Store the context so it can be used if this SubCircuit object
 # invokes another SubCircuit object within itself to add more
 # levels of hierarchy.
 self.context.append((self.__class__.hierarchy,))

 # Call the SubCircuit object function to create whatever circuitry it handles.
 # The arguments to the function are usually nets to be connected to the
 # parts instantiated in the function, but they may also be user-specific
 # and have no effect on the mechanics of adding parts or nets although
 # they may direct the function as to what parts and nets get created.
 # Store any results it returns as a list. These results are user-specific
 # and have no effect on the mechanics of adding parts or nets.
 try:
 results = _list_or_scalar(self.circuit_func(*args, **kwargs))
 except Exception:
 logger.exception("Serious error! Can't continue.")

 # Restore the context that existed before the SubCircuit circuitry was
 # created. This does not remove the circuitry since it has already been
 # added to the parts and nets lists.
 self.context.pop()

 return results

 @classmethod
 def _erc_setup(cls):
 """
 Initialize the electrical rules checker.
 """

 # Initialize the pin contention matrix.
 cls._erc_matrix = [[cls.OK for c in range(11)] for r in range(11)]
 cls._erc_matrix[Pin.OUTPUT][Pin.OUTPUT] = cls.ERROR
 cls._erc_matrix[Pin.TRISTATE][Pin.OUTPUT] = cls.WARNING
 cls._erc_matrix[Pin.UNSPEC][Pin.INPUT] = cls.WARNING
 cls._erc_matrix[Pin.UNSPEC][Pin.OUTPUT] = cls.WARNING
 cls._erc_matrix[Pin.UNSPEC][Pin.BIDIR] = cls.WARNING
 cls._erc_matrix[Pin.UNSPEC][Pin.TRISTATE] = cls.WARNING
 cls._erc_matrix[Pin.UNSPEC][Pin.PASSIVE] = cls.WARNING
 cls._erc_matrix[Pin.UNSPEC][Pin.UNSPEC] = cls.WARNING
 cls._erc_matrix[Pin.PWRIN][Pin.TRISTATE] = cls.WARNING
 cls._erc_matrix[Pin.PWRIN][Pin.UNSPEC] = cls.WARNING
 cls._erc_matrix[Pin.PWROUT][Pin.OUTPUT] = cls.ERROR
 cls._erc_matrix[Pin.PWROUT][Pin.BIDIR] = cls.WARNING
 cls._erc_matrix[Pin.PWROUT][Pin.TRISTATE] = cls.ERROR
 cls._erc_matrix[Pin.PWROUT][Pin.UNSPEC] = cls.WARNING
 cls._erc_matrix[Pin.PWROUT][Pin.PWROUT] = cls.ERROR
 cls._erc_matrix[Pin.OPENCOLL][Pin.OUTPUT] = cls.ERROR
 cls._erc_matrix[Pin.OPENCOLL][Pin.TRISTATE] = cls.ERROR
 cls._erc_matrix[Pin.OPENCOLL][Pin.UNSPEC] = cls.WARNING
 cls._erc_matrix[Pin.OPENCOLL][Pin.PWROUT] = cls.ERROR
 cls._erc_matrix[Pin.OPENEMIT][Pin.OUTPUT] = cls.ERROR
 cls._erc_matrix[Pin.OPENEMIT][Pin.BIDIR] = cls.WARNING
 cls._erc_matrix[Pin.OPENEMIT][Pin.TRISTATE] = cls.WARNING
 cls._erc_matrix[Pin.OPENEMIT][Pin.UNSPEC] = cls.WARNING
 cls._erc_matrix[Pin.OPENEMIT][Pin.PWROUT] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.INPUT] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.OUTPUT] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.BIDIR] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.TRISTATE] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.PASSIVE] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.UNSPEC] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.PWRIN] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.PWROUT] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.OPENCOLL] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.OPENEMIT] = cls.ERROR
 cls._erc_matrix[Pin.NOCONNECT][Pin.NOCONNECT] = cls.ERROR

 # Fill-in the other half of the symmetrical matrix.
 for c in range(1, 11):
 for r in range(c):
 cls._erc_matrix[r][c] = cls._erc_matrix[c][r]

 # Setup the error/warning logger.
 global erc_logger
 erc_logger = logging.getLogger('ERC_Logger')
 log_level = logging.WARNING

 handler = logging.StreamHandler(sys.stderr)
 handler.setLevel(logging.WARNING)
 handler.setFormatter(logging.Formatter(
 'ERC %(levelname)s: %(message)s'))
 erc_logger.addHandler(handler)

 scr_name = _get_script_name()
 handler = logging.StreamHandler(open(scr_name + '.erc', 'w'))
 handler.setLevel(log_level)
 handler.setFormatter(logging.Formatter('%(levelname)s: %(message)s'))
 erc_logger.addHandler(handler)

 erc_logger.setLevel(log_level)
 erc_logger.error = _CountCalls(erc_logger.error)
 erc_logger.warning = _CountCalls(erc_logger.warning)

 @classmethod
[docs] def set_pin_conflict_rule(cls, pin1_func, pin2_func, conflict_level):
 """
 Set the level of conflict for two types of pins on the same net.

 Args:
 pin1_func: The function of the first pin (e.g., Pin.OUTPUT).
 pin2_func: The function of the second pin (e.g., Pin.TRISTATE).
 conflict_level: Severity of conflict (e.g., cls.OK, cls.WARNING, cls.ERROR).
 """

 # Place the conflict level into the symmetrical ERC matrix.
 cls._erc_matrix[pin1_func][pin2_func] = conflict_level
 cls._erc_matrix[pin2_func][pin1_func] = conflict_level

 @classmethod
 def _erc_pin_to_pin_chk(cls, pin1, pin2):
 """Check for conflict between two pins on a net."""

 # Use the functions of the two pins to index into the ERC table
 # and see if the pins are compatible (e.g., an input and an output)
 # or incompatible (e.g., a conflict because both are outputs).
 return cls._erc_matrix[pin1.func][pin2.func]

 @classmethod
 def _ERC(cls):
 """
 Do an electrical rules check on the circuit.
 """

 cls._erc_setup()

 # Check the nets for errors.
 for net in cls.nets:
 net._erc()

 # Check the parts for errors.
 for part in cls.parts:
 part._erc()

 if (erc_logger.error.count, erc_logger.warning.count) == (0, 0):
 sys.stderr.write('\nNo ERC errors or warnings found.\n\n')
 else:
 sys.stderr.write('\n{} warnings found during ERC.\n'.format(
 erc_logger.warning.count))
 sys.stderr.write('{} errors found during ERC.\n\n'.format(
 erc_logger.error.count))

 @classmethod
 def _generate_netlist(cls, file=None, tool=KICAD):
 """
 Return a netlist as a string and also write it to a file/stream.

 Args:
 file: Either a file object that can be written to, or a string
 containing a file name, or None.

 Returns:
 A string containing the netlist.
 """
 try:
 gen_func = cls.__dict__['_gen_netlist_{}'.format(tool)]
 netlist = gen_func(cls)
 except KeyError:
 logger.error(
 "Can't generate netlist in an unknown ECAD tool format ({}).".format(
 tool))
 raise Exception

 if (logger.error.count, logger.warning.count) == (0, 0):
 sys.stderr.write(
 '\nNo errors or warnings found during netlist generation.\n\n')
 else:
 sys.stderr.write(
 '\n{} warnings found during netlist generation.\n'.format(
 logger.warning.count))
 sys.stderr.write(
 '{} errors found during netlist generation.\n\n'.format(
 logger.error.count))

 try:
 with file as f:
 f.write(netlist)
 except AttributeError:
 try:
 with open(file, 'w') as f:
 f.write(netlist)
 except (FileNotFoundError, TypeError):
 with open(_get_script_name() + '.net', 'w') as f:
 f.write(netlist)
 return netlist

 def _gen_netlist_kicad(self):
 scr_dict = _scriptinfo()
 src_file = os.path.join(scr_dict['dir'], scr_dict['source'])
 date = time.strftime('%m/%d/%Y %I:%M %p')
 tool = 'SKiDL (' + __version__ + ')'
 template = '(export (version D)\n' + \
 ' (design\n' + \
 ' (source "{src_file}")\n' + \
 ' (date "{date}")\n' + \
 ' (tool "{tool}"))\n'
 netlist = template.format(**locals())
 netlist += " (components"
 for p in SubCircuit.parts:
 netlist += '\n' + p._generate_netlist_component(KICAD)
 netlist += ")\n"
 netlist += " (nets"
 for code, n in enumerate(SubCircuit._get_nets()):
 n.code = code
 netlist += '\n' + n._generate_netlist_net(KICAD)
 netlist += ")\n)\n"
 return netlist

 @classmethod
 def _generate_xml(cls, file=None, tool=KICAD):
 """
 Return netlist as an XML string and also write it to a file/stream.

 Args:
 file: Either a file object that can be written to, or a string
 containing a file name, or None.

 Returns:
 A string containing the netlist.
 """
 try:
 gen_func = cls.__dict__['_gen_xml_{}'.format(tool)]
 netlist = gen_func(cls)
 except KeyError:
 logger.error(
 "Can't generate XML in an unknown ECAD tool format ({}).".format(
 tool))
 raise Exception

 if (logger.error.count, logger.warning.count) == (0, 0):
 sys.stderr.write(
 '\nNo errors or warnings found during XML generation.\n\n')
 else:
 sys.stderr.write(
 '\n{} warnings found during XML generation.\n'.format(
 logger.warning.count))
 sys.stderr.write(
 '{} errors found during XML generation.\n\n'.format(
 logger.error.count))

 try:
 with file as f:
 f.write(netlist)
 except AttributeError:
 try:
 with open(file, 'w') as f:
 f.write(netlist)
 except (FileNotFoundError, TypeError):
 with open(_get_script_name() + '.xml', 'w') as f:
 f.write(netlist)
 return netlist

 def _gen_xml_kicad(self):
 scr_dict = _scriptinfo()
 src_file = os.path.join(scr_dict['dir'], scr_dict['source'])
 date = time.strftime('%m/%d/%Y %I:%M %p')
 tool = 'SKiDL (' + __version__ + ')'
 template = '<?xml version="1.0" encoding="UTF-8"?>\n' + \
 '<export version="D">\n' + \
 ' <design>\n' + \
 ' <source>{src_file}</source>\n' + \
 ' <date>{date}</date>\n' + \
 ' <tool>{tool}</tool>\n' + \
 ' </design>\n'
 netlist = template.format(**locals())
 netlist += ' <components>'
 for p in SubCircuit.parts:
 netlist += '\n' + p._generate_xml_component(KICAD)
 netlist += '\n </components>\n'
 netlist += ' <nets>'
 for code, n in enumerate(SubCircuit._get_nets()):
 n.code = code
 netlist += '\n' + n._generate_xml_net(KICAD)
 netlist += '\n </nets>\n'
 netlist += '</export>\n'
 return netlist

[docs]def search(term):
 """Print a list of components with the regex term within their name, alias, description or keywords."""

 def search_libraries(term):
 """Search for a regex term in part libraries."""

 for lib_dir in lib_search_paths_kicad:
 # Get all the library files in the search path.
 lib_files = os.listdir(lib_dir)
 lib_files.extend(os.listdir('.'))
 lib_files = [l for l in lib_files if l.endswith('.lib')]

 parts = set() # Set of parts and their containing libraries found with the term.

 for lib_file in lib_files:
 lib = _SchLib(lib_file) # Open the library file.

 def mk_list(l):
 """Make a list out of whatever is given."""
 if isinstance(l, (list, tuple)):
 return l
 if not l:
 return []
 return [l]

 # Search the current library for parts with the given term in
 # each of the these categories.
 for category in ['name', 'alias', 'description', 'keywords']:
 for part in mk_list(lib.get_parts(**{category:term})):
 part._parse() # Parse the part to instantiate the complete object.
 parts.add((lib_file, part)) # Store the library name and part object.

 return list(parts) # Return the list of parts and their containing libraries.

 term = '.*' + term + '.*' # Use the given term as a substring.
 parts = search_libraries(term) # Search for parts with that substring.

 # Print each part name sorted by the library where it was found.
 for lib_file, p in sorted(parts, key=lambda p: p[0]):
 print('{}: {}'.format(lib_file, p.name))

[docs]def show(lib_name, part_name):
 """Print the I/O pins for a given part in a library."""
 try:
 return Part(lib_name, re.escape(part_name))
 except Exception:
 return None # Suppress the traceback information.

Circuit = SubCircuit

ERC = SubCircuit._ERC
generate_netlist = SubCircuit._generate_netlist
generate_xml = SubCircuit._generate_xml

POWER = Pin.POWER_DRIVE

This is a NOCONNECT net for attaching to pins which are intentionally left open.
NC = _NCNet('NOCONNECT')

 © Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		skidl 0.0.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

_static/comment.png

contributing.html

 Navigation

 		
 index

 		
 modules |

 		skidl 0.0.7 documentation »

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/xesscorp/skidl/issues.

If you are reporting a bug, please include:

		Your operating system name and version.

		Any details about your local setup that might be helpful in troubleshooting.

		Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

skidl could always use more documentation, whether as part of the
official skidl docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/xesscorp/skidl/issues.

If you are proposing a feature:

		Explain in detail how it would work.

		Keep the scope as narrow as possible, to make it easier to implement.

		Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up skidl for local development.

		Fork the skidl repo on GitHub.

		Clone your fork locally:

$ git clone git@github.com:your_name_here/skidl.git

		Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv skidl
$ cd skidl/
$ python setup.py develop

		Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

		When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 skidl tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

		Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

		Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

		The pull request should include tests.

		If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

		The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/xesscorp/skidl/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_skidl

 © Copyright 2016, XESS Corp..
 Created using Sphinx 1.3.5.

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

